
Computer Implementation of a Philosophy of

Mathematics

M. Randall Holmes

Nov 23 2017, 1 pm

1 Introduction

This paper is an account of an attempt to provide a computer implementation
of a philosophy of mathematics. The result has been an actual piece of software,
the Lestrade Type Inspector, implementing a logical framework which we refer
to as Lestrade. We hope that we may be forgiven for the play on literary
associations of our name.

Contents

1 Introduction 1
1.1 Philosophical considerations . 1
1.2 Compact formal description of the framework (not without philo-

sophical considerations) . 3
1.2.1 Sorts . 3
1.2.2 The Lestrade context: the system of “moves” 4
1.2.3 Descriptions of the basic user commands 5
1.2.4 The matter of terms with bound variables 8

2 Logic 9

3 Type Theory and the Curry Howard Isomorphism 36

4 Set Theory 37
4.1 Russell’s Paradox . 37
4.2 Zermelo set theory . 42
4.3 Toward a proof of the Well-Ordering Theorem 98

1.1 Philosophical considerations

A number of ideas fit together to form the philosophy which leads to Lestrade:
we will focus on the idea, going back to Aristotle, that infinities are potential
rather than actual. This is combined with the idea that mathematical proofs

1

are themselves mathematical objects which need to be taken into account in our
metaphysics: this is embodied in a version of the Curry-Howard isomorphism.

This might sound like a story which will end in a postulateivist account of
mathematics. It does not, or more accurately, doesn’t have to. Lestrade sup-
ports the usual classical mathematics of Dedekind, Peano, Cantor, Zermelo and
so forth. The usual set theory ZFC with classical logic is readily implemented
under Lestrade. The interpretation of what we are talking about when we rea-
son in classical set theory may be seen to be somewhat different. Of course,
postulateive theories can also readily be implemented under Lestrade.

We will begin our critique of mathematics based on the idea that infinities
should be potential rather than actual by considering functions. The usual
interpretation of a function in modern classical set theory is as a usually infinite
table of values given all at once. We discover what f(x) is by finding the element
y such that 〈x, y〉 ∈ f . This concept competes informally (as, for example, in
pedagogy) with an older idea: a function is a rule or method which gives an
output when an input (of the right sort) is presented to it. For the student
of calculus, the function (x 7→ x2 + 1) is embodied in the finite expression
x2 + 1 which tells you what to do to the input x (presumably a real number)
to get the outcome. Mathematicians have studied this sort of embodiment
of functions as expressions with slots in them for the inputs, notably in the λ-
calculus of Church, though Frege’s treatment of functions (which led to paradox
due to inattention to types) and Russell’s treatment of propositional functions
in Principia Mathematica are older, and similar in spirit.

We come up against the actual versus the potential character of infinite
totalities in logic when considering the universal quantifier. Is (∀x ∈ D : φ(x))
best understood as asserting φ(a) for each a ∈ D, in effect asserting an infinitary
conjunction the size of D? We instead take the view that the meaning of φ(x) is
that we can assert φ(a) whenever an a ∈ D is presented to us. This is embodied
in a treatment using suitable sorted objects and functions: our evidence for
(∀x ∈ D : φ(x)) is not understood as a conglomeration of evidence for each
φ(a) (a possibly vast actual infinity of items of evidence) but as a function F
which, given any a ∈ D, returns a value F (a) which is evidence for φ(a), under
our modest concept of a function as an entity which returns an output when
presented with an input.

We maintain a proper respect for the idea that entities come in various sorts.
We also remember that functions (or sets) can cause difficulties if we do not prop-
erly pay attention to sorts. The propositional function which takes absolutely
any unary predicate φ(x) (itself a function from the universe to propositions)
to ¬φ(φ) (which we naively suppose makes sense because we are considering a
predicate φ applicable to all entities whatsoever) may be called ρ in honor of
Russell, and then ρ(ρ) sadly expands to ¬ρ(ρ). Oh dear.

We are also attentive to the possibility of dependent sorting of functions: the
example of the universal quantifier supports this. As evidence for the proposition
(∀x ∈ D : φ(x)) we postulate a function F which takes as input an inhabitant a
of D and provides as output evidence for the assertion φ(a), which we will see
we regard as an inhabitant of a sort (that φ(a)): this output sort depends on

2

the value a of the input.

1.2 Compact formal description of the framework (not
without philosophical considerations)

This subsection contains an essentially complete description of the framework,
though it may be very hard to digest it without looking ahead at actual examples
of Lestrade constructions in the following sections.

1.2.1 Sorts

We outline our system of sorts, which implements some of our philosophical
prejudices. The things we talk about in Lestrade we call entities when we are
being entirely noncommittal about their nature. Entities are partitioned into
two species, objects and functions, each of the species being further partitioned
into sorts.

We enumerate the object sorts.
We provide a sort prop of propositions, and for each p of type prop we

provide a sort (that p) of evidence for p: if pp is of sort that p, we know that p
is true. It might seem that we should rather call the inhabitants of evidence sorts
(that p) “proofs” of p, but this involves committing to a particular philosophical
view. When we assume p for the sake of argument, we postulate evidence for p
(an element of that p): to presume that such evidence must actually be a proof
is to presume a postulateivist view.

Some mathematicians want to consider a world of mathematical objects
which is unsorted, and some want to consider a world of mathematical objects
organized into sorts. We provide support for both views. Lestrade provides a
sort obj of untyped mathematical objects, a sort type of “type labels”, and for
each type label τ a sort (in τ) whose inhabitants we term “objects of type τ”.
Of course, whenever a new proposition p is constructed, we get a new sort that
p and whenever a new type label τ is constructed we get a new sort (in τ),
these sorts being properly called “types” in Lestrade usage.

That we separate propositions and evidence for propositions from types and
their inhabitants does not mean that we do not recognize the parallelism between
them embodied in the Curry-Howard isomorphism, of which we will have more
to say. We are acknowledging pragmatically that sorts inhabited by proofs and
sorts inhabited by objects are used differently, and that in a particular theory
we may want to treat propositions and their inhabitants uniformly in a way in
which we do not want to treat types and their inhabitants. The same approach
was taken in Automath, which we regard as the parent of Lestrade.

We also make the side remark that we refer to the objects in the sort type

as “type labels” rather than “types” because we want to discourage thinking
of these objects as collections with their inhabitants as members, and also be-
cause the type proper associated with a type label τ is the sort (in τ): we
systematically avoid any coincidence in notation or terminology for entities and
sorts.

3

We now describe the function sorts. A function sort takes the form

[(x1 : τ1), . . . , (xn : τn)⇒ (− : τ)].

In this notation the xi’s are variables (bound in the notation) with each xi of
sort τi (which may be either an object or a function sort). The function is
understood to take arguments ti of the sorts indicated by τi and to present
output of sort τ , an object sort. Further, each sort τj may depend on variables
xi with i < j, and the output sort τ may depend on any or all of the input
variables xi.

At this point we have described the entire sort system of Lestrade. The
rest of the story is postulation of new objects and functions of previously given
sorts (which may via the constructors that and in generate new sorts) and
determination of the consequences of postulating these constructions.

The very compact description of function sorts embodies a number of philo-
sophical design decisions. In Lestrade, we do not view functions as “first-class
entities”: that status belongs to objects. The status of functions might be anal-
ogous to that of proper classes in familiar set theories which allow such, with
the further refinement that a class (non-set) would further be viewed as distinct
from a set with the same extension, and obtained from it by an explicit con-
struction: the class would be a function and the set a correlated object. When
we declare a function, we are always declaring a function which takes arguments
(objects and/or functions) and returns an object. This may be thought of as
reversing the “currying” operation on functions as far as possible. When we
define a function, it is always via an expression for an object containing ob-
ject and/or function parameters, in keeping with our rule or expression based
metaphorical view of functions. This is not to say that we regard the possible
action of functions as limited by our means of forming expressions: primitive
declarations of functions simply declare a black box (an oracle as it were) that
takes arguments of given dependent sorts and returns an object output of a
given dependent sort. Lestrade does not assume (though it may be able to ex-
press, and therefore accept as user postulates in theories) validity of arguments
about functions based on induction on the structure of the expressions we can
currently define: it is the default position of Lestrade that functions yet to be
postulated might have unexpected behavior, unless this is specifically excluded
by user declared postulates.

It is also worth noting that we have essentially presented dependently typed
functions as the only built in type construction. We do not provide product
or union types, nor do we provide the more general inductive or co-inductive
types, though all of these can be implemented in the Lestrade framework with
suitable declarations by the user. In this, Lestrade is similar to Automath.

1.2.2 The Lestrade context: the system of “moves”

We want to maintain that we are never considering more than a concrete finite
collection of actual entities at any point in a Lestrade construction. We achieve
generality not by supposing that we can make propositions about all entities (of

4

a given sort) at once, but by a device which allows us to introduce “arbitrary”
entities of a sort and speak about them, then export what can be shown about
“arbitrary” entities to any specific entity of that sort that we may postulate.
This is handled by the device of “moves” which we now describe.

The declarations at any particular moment in a Lestrade construction are
organized into moves 0, 1, . . . , i, i+1, where i is a concrete finite number. There
are always at least two moves (so all four of the listed moves are present, though
they may not all be distinct). Move 0 contains the entities to which the user is
permanently committed. Moves 0, 1, . . . , i are inhabited by entities which the
user currently takes to be constant. Move i is referred to as the “last move”
or “the current move”. Move i + 1 is referred to as “the next move”. About
objects at the next move, one knows no more than can be divined from their
sorts; they can be thought of as “arbitrary” or “variable”. On each move, there
is an order, which is the order in which the entities were declared: an entity or
its sort can only depend on entities appearing at earlier moves or appearing in
the same move earlier in the order on that move.

We can modify the move structure. We can open a new move, incrementing
the parameter i, creating a new move i + 1 with no declarations in it, and
construing the former next move as the new last move. We can close the next
move by decrementing i (if i is positive), discarding all declarations in the next
move entirely, and reconstruing the former last move as the new next move. We
can at any point clear all declarations in the next move (this last is provided
as a primitive operation because declarations in move 1 would otherwise be
permanent). A refinement that we will not explore now is the ability to save
moves by name before closing them, so that they can later be reopened in the
same context if desired.

1.2.3 Descriptions of the basic user commands

The way this actually works is best described operationally. The user can exe-
cute a number of operations in the basic Lestrade model.

A variable, in all contexts, means an entity which is declared but not defined,
and whose declaration appears in the next move.

The user can declare a new object variable in the next move at any point.
This new object is placed last in the order on the next move. The sort of this
object may depend of course on anything already declared, including variables
already declared in the same move.1

The user may declare a new function, taking as arguments object and func-
tion variables in the next move given in the order in which they were declared
(this is a cheap way to enforce dependency conditions) and giving output of a
given object type. The argument list must include all variables on which the
sort of the output or any of the sorts of the inputs depend.2 This function is

1The same Lestrade command can be used to declare a function variable in the next move,
but this is not part of the basic model. We will see that the basic model allows the declaration
of function variables with some indirection.

2We will very shortly see that some arguments can be left implicit, but this is not part of

5

added to the last move, at the end of the order on the last move: we postulate
the function as a new (relative) primitive constant in world i, not as a variable
in move i+ 1 (we will see later how to introduce function variables in the next
move). This is how to add axioms and primitive notions to a Lestrade theory.

In the special case where the argument list is null, we are in effect declaring
an object constant in the last move. This is the only way to declare an object
in move 0 as a primitive.

The user may define a function, giving an argument list of variables from the
next move (in the order in which they were declared) and providing an object
term depending only on those variables as the output, from which the sort of
the output is of course deduced. The argument list must include all variables on
which the object term, its sort, or the sorts of any of the inputs depend.3 This
function is added to the last move at the end of the order on the last move.

This is a natural point at which to briefly (as possible) remark on the struc-
ture of complex object terms and how to type them (though complex object
terms could already have appeared in declarations of new functions or even ob-
ject variables, as arguments of the that and in constructors). Terms in the
basic Lestrade language are either atomic (and in this case have been declared
and have sort which can be looked up) or application terms f(t1, . . . , tn), where
f is a function and each ti is either an object term or an atomic function term.
The sort of f being [(x1 : τ1), . . . , (xm : τm)⇒ (−, τ)], it is required for the term
to be well-formed that m = n, and further the sort of t1 must be equivalent
to τ1 mod expansion of definitions (if not, the term is ill-formed because ill-
sorted) and then the sort of f(t1, . . . , tn) will be τ [t1/x1] if n = 1 and otherwise
will be the same as the sort of f∗(t2, . . . , tn), where f∗ is postulated with sort
[(x2 : τ2[t1/x1]), . . . , (xn : τn[t1/x1])⇒ (− : τ [t1/x1])].

A function defined by a definition f(x1, . . . , xn) = T , where each xi has
sort τi and T has sort τ , with the usual allowed dependencies of sort, has sort
[(x1 : τ1), . . . , (xn : τn)⇒ (−, τ)] and is represented internally as a λ-term

[(x1 : τ1), . . . , (xn : τn)⇒ (T : τ)]

(where T of course may depend on any or all of the xi’s) and f(t1, . . . , tn) will
reduce to T [t1/x1] if it sorts correctly and n = 1, and otherwise (if it types
correctly) reduces to f∗(t2, . . . , tn) (which we then continue to reduce), where
f∗ represents

[(x2 : τ2[t1/x1]), . . . , (xn : τn[t1/x1])⇒ (T [t1/x1] : τ [t1/x1])].

In all of these notations, U [t/x] represents the result of substitution of the term
t for the variable x in the term U , with the usual issues due to the binding of
variables in function sorts and λ-terms. 4

the basic model.
3subject to the same remark about implicit arguments made in the previous paragraph.
4Lestrade handles bound variable collision issues by indexing each bound variable appearing

in a given function sort term or anonymous function term (λ-term) with a numerical index
shared by all variables bound at the top level in that context, and not appearing in any other
term in the context.

6

In the special case where the argument list is null, we are in effect defining
an object notation in the last move. To prove a theorem p is to define an
object of sort that p, under Lestrade, so proof as an activity has been handled,
as a species of definition. It is possible to introduce objects by definition in
move 0, and in fact theorems would be expected to be objects of evidence types
defined at move 0. Objects of evidence types defined at moves of higher index
presumably depend on objects which are variable from the move 0 standpoint,
representing postulated objects or assumed hypotheses.

We can arrange to have function variables in the next move. This is ar-
ranged by opening a new move, declaring variables of the desired input types,
declaring a new function of the desired sort, then closing the new move, leaving
a non-defined function declared in the next move, usable as a function variable.
(Advanced features allow one-line declarations of function variables without
opening a new move.)

When a defined constant or function is present in the next move (it was of
course necessarily defined at a point when the current next move was the last
move) and it is used in a definition or declaration, it is necessary to eliminate
the defined notion from any declaration or definition being recorded in the last
move (because any information about the meaning of the defined identifier would
vanish if the next move were closed, which we are free to do at any time). This
is done in the case of constants and in the case of functions appearing in applied
position by expanding the definitions. Functions appearing as arguments are
replaced by anonymous λ-terms. In the basic Lestrade model, there is no reason
for a user even to be able to write an anonymous λ-term: it is always possible
using the move system to introduce a function as it were by a definition f(x) =
x2 + 1 rather than via a notation like (x 7→ x2 + 1), though it is possible (an
advanced feature added on top of the basic model) for a user to enter λ-terms
as arguments in Lestrade expressions. The strategy would then be to always
refer to the function using the name f : when this name passes out of scope
due to the move in which it was declared being closed, any occurrences of f as
an argument would be replaced by an automatically generated λ-term: these
would only appear in recorded sort information. Where a substitution would put
an automatically generated λ-term in applied position, a definitional expansion
occurs (a β-reduction, as it were); there is no provision for a λ-term to appear
anywhere but in argument position either in user-entered text or in Lestrade
output.

At this point we have described all the essential operations in the basic
model of Lestrade. We claim that this is a framework in principle adequate for
the practice of mathematics in any theory whatsoever. We will support this
claim by presenting examples, and we will also try to explain what the pos-
sibility of implementing classical theories under Lestrade might tell us about
alternative ways of interpreting what these theories are telling us. We should
add that we are ourselves quite friendly to a classical Platonist interpretation
of mathematics: we are very interested in the fact that theories usually taken
as presupposing the Platonist view can apparently be supported on the meta-
physically much more parsimonious basis of (our interpretation of) Lestrade.

7

1.2.4 The matter of terms with bound variables

The basic Lestrade model does not require the user ever to use terms with bound
variables. They are supported, however. A user may enter function terms as
arguments appearing in Lestrade object terms, and the user may declare a
function variable with type a given function sort term. The form of a user-
entered function term is [x1, . . . , xn ⇒ T], where the xi’s are variables appearing
in the next move and T is an object term, and the form of a user-entered function
sort term is [x1, . . . , xn ⇒ τ], where the xi’s are variables appearing in the next
move and τ is an object sort term. Notice that no form of sort inference or
explicit assignment of sorts to variables in a term is supported.

The reference of a function term [x1, . . . , xn ⇒ T] is the same as the reference
of a new atomic function term with declaration information

[(x∗1 : τ∗1), . . . , (x∗n : τ∗n)⇒ (T ∗, τ∗)],

where T ∗ and τ∗ are obtained by replacing each xi with x∗i in T and τ respec-
tively, and each τ∗j is obtained by replacing each xi for which i < j with x∗i in τj
(notice that τ∗1 is simply τ1; we write it with a star just because everything is to
be starred). There is no restriction on the order in which the variables xi appear
in the next move: correct dependency structure is enforced by the starring pro-
cess. Such a term can appear only as an argument: when a substitution would
put it in applied position, definitional expansion takes place (the same thing can
happen with automatically generated λ-terms created when function identifiers
go out of scope). Similarly, the reference of a function term [x1, . . . , xn ⇒ τ] is
the same as that of the function sort notation [(x∗1 : τ∗1), . . . , (x∗n : τ∗n)⇒ (−, τ∗)].
The starring process signals the peculiarity of variable binding terms from the
standpoint of the basic Lestrade model: variables in the next move are being in
effect cloned to serve as variables in a move or moves of higher index which are
not officially actually opened.

The role of explicitly bound variables in the move model is a bit unexpected.
The difficulty is that these variables, if one constructed the same function terms
or function sort terms in the basic model, would actually refer to variables in
moves of higher index (one additional move for each nested bracket in such a
term). In fact, careful consideration should reveal that this is what is actually
happening: one should consider the bound variables to be variables from further
moves “cloned” from variables made available in the next move.

It is demonstrable that anything postulateible using bound variable terms
can be constructed in the basic model, and that anything postulateible in the
basic model can be constructed using bound variable terms without ever opening
a move with higher index than 1.

8

2 Logic

In this section we discuss the implementation of usual notions of logic and proof
strategies under Lestrade. This and subsequent sections include actual dialogue
with the Lestrade Type Inspector, which may help to make the very abstract
discussion in the first section more concrete.

We begin by providing ourselves with some propositional variables.

Lestrade execution:

declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

The declare command implements the user operation of declaring object
variables in the next move.

Lestrade execution:

postulate & p q prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

postulate -> p q prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

We declare the operations of conjunction and implication. At this point
all we know of them is the types of their input and output. The postulate

command implements the user operation of declaring a new function or object.

9

Lestrade execution:

declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

declare pq that p & q

>> pq: that (p & q) {move 1}

postulate Conjunction pp qq that p & q

>> Conjunction: [(.p_1:prop),(pp_1:that .p_1),

>> (.q_1:prop),(qq_1:that .q_1) => (---:that

>> (.p_1 & .q_1))]

>> {move 0}

postulate Simplification1 pq that p

>> Simplification1: [(.p_1:prop),(.q_1:prop),

>> (pq_1:that (.p_1 & .q_1)) => (---:that

>> .p_1)]

>> {move 0}

postulate Simplification2 pq that q

>> Simplification2: [(.p_1:prop),(.q_1:prop),

>> (pq_1:that (.p_1 & .q_1)) => (---:that

>> .q_1)]

>> {move 0}

10

In these lines, we declare the basic logical operations handling conjunction.
This reveals some features in Lestrade which are not described in the basic
model. Note that the term language does handle infix notation. Note that
Conjunction and Simplification1/2 have additional deduced arguments not
shown in the command lines declaring them. From evidence pp for p and
evidence qq for q, we do get a proof of p & q, but Lestrade notices that
Conjunction is also a function of p and q: but from the sorts of any argu-
ments pp and qq supplied, we can deduce the values of the implicit arguments
p and q.

11

Lestrade execution:

define Conjcomm pq : Conjunction(Simplification2 \

pq,Simplification1 pq)

>> Conjcomm: [(.p_1:prop),(.q_1:prop),(pq_1:

>> that (.p_1 & .q_1)) => ((Simplification2(pq_1)

>> Conjunction Simplification1(pq_1)):that

>> (.q_1 & .p_1))]

>> {move 0}

Here is our first exercise in proof, presenting commutativity of conjunction
as a rule of inference. The define command implements the user operation of
defining a function or object. It is worth noting in reading the Lestrade response
in this dialogue that Lestrade will always write a function with two inputs (the
first of which is not a function) in infix notation: Conjunction is used as an
infix in the reported notation for the type of Conjcomm.

Lestrade execution:

declare pthenq that p -> q

>> pthenq: that (p -> q) {move 1}

postulate Mp pp pthenq that q

>> Mp: [(.p_1:prop),(pp_1:that .p_1),(.q_1:prop),

>> (pthenq_1:that (.p_1 -> .q_1)) => (---:

>> that .q_1)]

>> {move 0}

Here is the logical rule of modus ponens, our basic rule for using an implica-
tion. The rule for proving an implication, which we give next, is metaphysically
more profound.

12

Lestrade execution:

open

declare pp2 that p

>> pp2: that p {move 2}

postulate Ded pp2 that q

>> Ded: [(pp2_1:that p) => (---:that q)]

>> {move 1}

close

postulate Deduction Ded that p->q

>> Deduction: [(.p_1:prop),(.q_1:prop),(Ded_1:

>> [(pp2_2:that .p_1) => (---:that .q_1)])

>> => (---:that (.p_1 -> .q_1))]

>> {move 0}

declare ded2 [pp=>that q] \

>> ded2: [(pp_1:that p) => (---:that q)]

>> {move 1}

postulate Deduction2 ded2 that p->q

>> Deduction2: [(.p_1:prop),(.q_1:prop),(ded2_1:

>> [(pp_2:that .p_1) => (---:that .q_1)])

>> => (---:that (.p_1 -> .q_1))]

>> {move 0}

13

The open command carries out the user operation of opening a new next
move. close closes this move. In between the open and close command we
see the construction of a function from evidence for p to evidence for q. The
primitive function Deduction takes any such function to evidence for p→ q. We
do not simply identify proofs of p→ q with functions from proofs of p to proofs
of q, as is often done, because our sort system forbids us to identify objects and
functions.

This is our first example of the process of declaring a function variable.
I then demonstrate how advanced features allow demonstration of an equiv-

alent function Deduction2 without opening a new move (by using one-line dec-
laration of a function variable using a function sort term with variable binding).

Lestrade execution:

open

declare pp2 that p

>> pp2: that p {move 2}

define propid pp2 : pp2

>> propid: [(pp2_1:that p) => (---:that p)]

>> {move 1}

close

define Taut1 p : Deduction propid

>> Taut1: [(p_1:prop) => (Deduction([(pp2_2:

>> that p_1) => (pp2_2:that p_1)])

>> :that (p_1 -> p_1))]

>> {move 0}

define Taut2 p : Deduction [pp => pp] \

14

>> Taut2: [(p_1:prop) => (Deduction([(pp_2:that

>> p_1) => (pp_2:that p_1)])

>> :that (p_1 -> p_1))]

>> {move 0}

open

declare pq1 that p & q

>> pq1: that (p & q) {move 2}

define conjcomm pq1 : Conjcomm pq1

>> conjcomm: [(pq1_1:that (p & q)) => (---:

>> that (q & p))]

>> {move 1}

close

define Conjcomm2 p q : Deduction conjcomm

>> Conjcomm2: [(p_1:prop),(q_1:prop) => (Deduction([(pq1_2:

>> that (p_1 & q_1)) => (Conjcomm(pq1_2):

>> that (q_1 & p_1))])

>> :that ((p_1 & q_1) -> (q_1 & p_1)))]

>> {move 0}

In this paragraph, we first prove the tautology P → P in two different ways.
The first proof follows the basic model (except for taking advantage of implicit
argument inference). The second proof uses a user-entered λ-term. There is a
certain philosophical tension in the use of the λ-term: it reads the types of its
bound variables from the types of the variables of the same shapes in move 1,
but as we can see from the explicit version, it really should be reading them
from move 2, which is never opened. The idea is that one should suppose that
variables are being cloned from the next move into deeper moves never actually

15

opened in the course of reading a λ-term.
We then prove (P ∧Q)→ (Q∧P). A subtle point is that we could not have

issued the command Deduction Conjcomm above, even though superficially it
might seem that Conjcomm does exactly the same thing as conjcomm. The issue
is that Conjcomm also has p and q as hidden arguments, so it is not actually of
the right sort to be fed to Deduction.

Lestrade execution:

clearcurrent

declare A prop

>> A: prop {move 1}

declare B prop

>> B: prop {move 1}

declare C prop

>> C: prop {move 1}

% prove ((A -> B) & (B -> C)) -> (A -> C)

open

declare hyp1 that (A -> B) & (B -> C)

>> hyp1: that ((A -> B) & (B -> C)) {move

>> 2}

define line1 hyp1 : Simplification1 hyp1

>> line1: [(hyp1_1:that ((A -> B) & (B ->

16

>> C))) => (---:that (A -> B))]

>> {move 1}

define line2 hyp1 : Simplification2 hyp1

>> line2: [(hyp1_1:that ((A -> B) & (B ->

>> C))) => (---:that (B -> C))]

>> {move 1}

% now suppose A to prove A -> C

open

declare hyp2 that A

>> hyp2: that A {move 3}

define line3 hyp2 : Mp hyp2 (line1 \

hyp1)

>> line3: [(hyp2_1:that A) => (---:that

>> B)]

>> {move 2}

define line4 hyp2 : Mp (line3 hyp2, \

line2 hyp1)

>> line4: [(hyp2_1:that A) => (---:that

>> C)]

>> {move 2}

close

define line5 hyp1 : Deduction line4

17

>> line5: [(hyp1_1:that ((A -> B) & (B ->

>> C))) => (---:that (A -> C))]

>> {move 1}

close

define Transimp A B C : Deduction line5

>> Transimp: [(A_1:prop),(B_1:prop),(C_1:prop)

>> => (Deduction([(hyp1_2:that ((A_1 -> B_1)

>> & (B_1 -> C_1))) => (Deduction([(hyp2_3:

>> that A_1) => (((hyp2_3 Mp Simplification1(hyp1_2))

>> Mp Simplification2(hyp1_2)):that

>> C_1)])

>> :that (A_1 -> C_1))])

>> :that (((A_1 -> B_1) & (B_1 -> C_1)) ->

>> (A_1 -> C_1)))]

>> {move 0}

The text above demonstrates how the move structure of Lestrade can be
used to implement argument under hypotheses.

Lestrade execution:

define <-> A B : (A -> B) & B -> A

>> <->: [(A_1:prop),(B_1:prop) => (((A_1 ->

>> B_1) & (B_1 -> A_1)):prop)]

>> {move 0}

We move next to disjunction.

Lestrade execution:

clearcurrent

declare p prop

>> p: prop {move 1}

18

declare q prop

>> q: prop {move 1}

postulate V p q prop

>> V: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

postulate Addition2 p qq that p V q

>> Addition2: [(p_1:prop),(.q_1:prop),(qq_1:

>> that .q_1) => (---:that (p_1 V .q_1))]

>> {move 0}

postulate Addition1 q pp that p V q

>> Addition1: [(q_1:prop),(.p_1:prop),(pp_1:

>> that .p_1) => (---:that (.p_1 V q_1))]

>> {move 0}

declare pq that p V q

19

>> pq: that (p V q) {move 1}

declare r prop

>> r: prop {move 1}

declare case1 that p->r

>> case1: that (p -> r) {move 1}

declare case2 that q->r

>> case2: that (q -> r) {move 1}

postulate Cases pq case1 case2 that r

>> Cases: [(.p_1:prop),(.q_1:prop),(pq_1:that

>> (.p_1 V .q_1)),(.r_1:prop),(case1_1:that

>> (.p_1 -> .r_1)),(case2_1:that (.q_1 ->

>> .r_1)) => (---:that .r_1)]

>> {move 0}

We present postulateive rules for negation.

Lestrade execution:

postulate ?? prop

>> ??: prop {move 0}

define ~p : p -> ??

>> ~: [(p_1:prop) => ((p_1 -> ??):prop)]

20

>> {move 0}

declare absurd that ??

>> absurd: that ?? {move 1}

postulate Panic p absurd : that p

>> Panic: [(p_1:prop),(absurd_1:that ??) =>

>> (---:that p_1)]

>> {move 0}

?? is a canonical false statement, which we will write ⊥ when typeset. We
define ¬P as P →⊥ and adopt the rule that a false statement implies anything.

And we indicate how to make our logic classical.

Lestrade execution:

declare maybe that ~ ~ p

>> maybe: that ~(~(p)) {move 1}

postulate Dneg maybe that p

>> Dneg: [(.p_1:prop),(maybe_1:that ~(~(.p_1)))

>> => (---:that .p_1)]

>> {move 0}

There follows homage to Aristotle.

Lestrade execution:

clearcurrent

declare p prop

21

>> p: prop {move 1}

% Prove p V ~p

% start by supposing otherwise

open

declare hyp1 that ~(p V ~p)

>> hyp1: that ~((p V ~(p))) {move 2}

% show ~ p

open

declare hyp2 that p

>> hyp2: that p {move 3}

define line1 hyp2 : Addition1 ~ p hyp2

>> line1: [(hyp2_1:that p) => (---:that

>> (p V ~(p)))]

>> {move 2}

define line2 hyp2 : Mp (line1 hyp2, \

hyp1)

>> line2: [(hyp2_1:that p) => (---:that

>> ??)]

>> {move 2}

close

22

define line3 hyp1 : Deduction line2

>> line3: [(hyp1_1:that ~((p V ~(p)))) =>

>> (---:that (p -> ??))]

>> {move 1}

define line4 hyp1 : Addition2 (p, line3 \

hyp1)

>> line4: [(hyp1_1:that ~((p V ~(p)))) =>

>> (---:that (p V (p -> ??)))]

>> {move 1}

define line5 hyp1 : Mp (line4 hyp1, hyp1)

>> line5: [(hyp1_1:that ~((p V ~(p)))) =>

>> (---:that ??)]

>> {move 1}

close

define excmid0 p : Deduction line5

>> excmid0: [(p_1:prop) => (Deduction([(hyp1_2:

>> that ~((p_1 V ~(p_1)))) => (((p_1 Addition2

>> Deduction([(hyp2_3:that p_1) => (((~(p_1)

>> Addition1 hyp2_3) Mp hyp1_2):that

>> ??)]))

>> Mp hyp1_2):that ??)])

>> :that (~((p_1 V ~(p_1))) -> ??))]

>> {move 0}

define Excmid p : Dneg (excmid0 p)

>> Excmid: [(p_1:prop) => (Dneg(excmid0(p_1)):

>> that (p_1 V ~(p_1)))]

23

>> {move 0}

The attentive reader should be able to tell from the proof above that Lestrade
in many places demonstrates that it knows that P →⊥ and ¬P are the same
thing. We do though want to have the ability to put a result that we prove in
the form that we expect.

Lestrade execution:

clearcurrent

declare p prop

>> p: prop {move 1}

declare pp that p

>> pp: that p {move 1}

define Fixprop p pp : pp

>> Fixprop: [(p_1:prop),(pp_1:that p_1) => (pp_1:

>> that p_1)]

>> {move 0}

declare notso [pp => that ??] \

>> notso: [(pp_1:that p) => (---:that ??)]

>> {move 1}

define Negintro notso : Fixprop (~p,Deduction \

notso)

24

>> Negintro: [(.p_1:prop),(notso_1:[(pp_2:that

>> .p_1) => (---:that ??)])

>> => ((~(.p_1) Fixprop Deduction(notso_1)):

>> that ~(.p_1))]

>> {move 0}

The rule Negintro is actually a specialization of Deduction; Fixprop is
used to coerce the output into the form ¬P instead of P →⊥. The idea behind
Fixprop is that it reads the form of its output from its first argument, while
the actual proof presented to it as its second argument may prove something
whose type looks different but matches the first argument. We also used a fancy
expression for a function sort to avoid opening a move. The expression [pp =>

that ??] represents the type of a function with a single input of the type of
pp (read from the next move) to an object of type that ??.

Now we begin the treatment of quantification. We present the declarations
in two styles, one with use of variable binding terms and one without.

Lestrade execution:

clearcurrent

open

declare x1 obj

>> x1: obj {move 2}

postulate Pred x1 prop

>> Pred: [(x1_1:obj) => (---:prop)]

>> {move 1}

close

postulate Forall Pred prop

>> Forall: [(Pred_1:[(x1_2:obj) => (---:prop)])

>> => (---:prop)]

25

>> {move 0}

open

declare x1 obj

>> x1: obj {move 2}

postulate univev1 x1 that Pred x1

>> univev1: [(x1_1:obj) => (---:that Pred(x1_1))]

>> {move 1}

close

postulate Ug univev1 that Forall Pred

>> Ug: [(.Pred_1:[(x1_2:obj) => (---:prop)]),

>> (univev1_1:[(x1_3:obj) => (---:that .Pred_1(x1_3))])

>> => (---:that Forall(.Pred_1))]

>> {move 0}

declare univev2 that Forall Pred

>> univev2: that Forall(Pred) {move 1}

declare x obj

>> x: obj {move 1}

postulate Ui univev2 x that Pred x

>> Ui: [(.Pred_1:[(x1_2:obj) => (---:prop)]),

>> (univev2_1:that Forall(.Pred_1)),(x_1:

26

>> obj) => (---:that .Pred_1(x_1))]

>> {move 0}

clearcurrent

declare x1 obj

>> x1: obj {move 1}

declare Pred [x1 => prop] \

>> Pred: [(x1_1:obj) => (---:prop)]

>> {move 1}

postulate Forall2 Pred prop

>> Forall2: [(Pred_1:[(x1_2:obj) => (---:prop)])

>> => (---:prop)]

>> {move 0}

declare univev1 [x1 => that Pred x1] \

>> univev1: [(x1_1:obj) => (---:that Pred(x1_1))]

>> {move 1}

postulate Ug2 univev1 : that Forall Pred

>> Ug2: [(.Pred_1:[(x1_2:obj) => (---:prop)]),

>> (univev1_1:[(x1_3:obj) => (---:that .Pred_1(x1_3))])

27

>> => (---:that Forall(.Pred_1))]

>> {move 0}

declare univev2 that Forall Pred

>> univev2: that Forall(Pred) {move 1}

declare x obj

>> x: obj {move 1}

postulate Ui2 univev2, x that Pred x

>> Ui2: [(.Pred_1:[(x1_2:obj) => (---:prop)]),

>> (univev2_1:that Forall(.Pred_1)),(x_1:

>> obj) => (---:that .Pred_1(x_1))]

>> {move 0}

We now present the postulateive rules for the existential quantifier

Lestrade execution:

clearcurrent

declare x1 obj

>> x1: obj {move 1}

declare Pred [x1 => prop] \

>> Pred: [(x1_1:obj) => (---:prop)]

>> {move 1}

28

postulate Exists Pred prop

>> Exists: [(Pred_1:[(x1_2:obj) => (---:prop)])

>> => (---:prop)]

>> {move 0}

declare x obj

>> x: obj {move 1}

declare existsev1 that Pred x

>> existsev1: that Pred(x) {move 1}

postulate Ei Pred, x, existsev1 that Exists \

Pred

>> Ei: [(Pred_1:[(x1_2:obj) => (---:prop)]),

>> (x_1:obj),(existsev1_1:that Pred_1(x_1))

>> => (---:that Exists(Pred_1))]

>> {move 0}

define Eia x, existsev1: Ei Pred,x,existsev1

>> Eia: [(x_1:obj),(.Pred_1:[(x1_2:obj) => (---:

>> prop)]),

>> (existsev1_1:that .Pred_1(x_1)) => (Ei(.Pred_1,

>> x_1,existsev1_1):that Exists(.Pred_1))]

>> {move 0}

define Eib Pred, existsev1: Ei Pred,x,existsev1

29

>> Eib: [(Pred_1:[(x1_2:obj) => (---:prop)]),

>> (.x_1:obj),(existsev1_1:that Pred_1(.x_1))

>> => (Ei(Pred_1,.x_1,existsev1_1):that Exists(Pred_1))]

>> {move 0}

declare existsev2 that Exists Pred

>> existsev2: that Exists(Pred) {move 1}

declare p prop

>> p: prop {move 1}

declare witnessing [x,existsev1 => that p] \

>> witnessing: [(x_1:obj),(existsev1_1:that

>> Pred(x_1)) => (---:that p)]

>> {move 1}

postulate Eg existsev2, witnessing: that \

p

>> Eg: [(.Pred_1:[(x1_2:obj) => (---:prop)]),

>> (existsev2_1:that Exists(.Pred_1)),(.p_1:

>> prop),(witnessing_1:[(x_3:obj),(existsev1_3:

>> that .Pred_1(x_3)) => (---:that .p_1)])

>> => (---:that .p_1)]

>> {move 0}

An interesting aspect of the existential quantifier is the relationship of exis-
tential instantiation to the implicit inference functions. In the universal quanti-
fier rules, reasoning in either direction, one can determine the predicate from the

30

data supplied. But from an expanded statement Pred x one cannot determine
Pred with certainty even given x; sometimes one has to supply it because some
instances of x are accidental occurrences as a constant. Supplying a version with
all arguments explicit, then defining versions with different choices of explicit
arguments is a good template for what happens with other operations where we
can deduce different arguments under different circumstances.

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

postulate = x y prop

>> =: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 0}

postulate Reflexive x that x=x

>> Reflexive: [(x_1:obj) => (---:that (x_1 =

>> x_1))]

>> {move 0}

define test1 x : Eia x Reflexive x

>> test1: [(x_1:obj) => ((x_1 Eia Reflexive(x_1)):

>> that Exists([(x1_3:obj) => ((x1_3 = x1_3):

>> prop)]))

>>]

>> {move 0}

31

define test2 x: Eib [y => x=y] \

Reflexive x

>> test2: [(x_1:obj) => (Eib([(y_2:obj) => ((x_1

>> = y_2):prop)]

>> ,Reflexive(x_1)):that Exists([(y_3:obj)

>> => ((x_1 = y_3):prop)]))

>>]

>> {move 0}

open

declare y1 obj

>> y1: obj {move 2}

define testpred y1 : x=y1

>> testpred: [(y1_1:obj) => (---:prop)]

>> {move 1}

close

define test3 x : Eib testpred, Reflexive \

x

>> test3: [(x_1:obj) => (Eib([(y1_2:obj) =>

>> ((x_1 = y1_2):prop)]

>> ,Reflexive(x_1)):that Exists([(y1_3:obj)

>> => ((x_1 = y1_3):prop)]))

>>]

>> {move 0}

define test4 : Ug test3

32

>> test4: [(Ug(test3):that Forall([(x_3:obj)

>> => (Exists([(y1_4:obj) => ((x_3 = y1_4):

>> prop)])

>> :prop)]))

>>]

>> {move 0}

In the example above we prove two different existential statements from the
same evidence, in one case supplying the witness and letting Lestrade guess the
predicate, and in the other case supplying a different predicate.

The proof of test3 illustrates a style in which the use of a λ-term as an
argument is avoided.

The proof test4 illustrates the addition of a universal quantifier just because
we can.

We introduced some basic declarations for equality just for the sake of the
example; more declarations follow.

Lestrade execution:

% basic additional declarations for equality

clearcurrent

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

declare pred [x=>prop] \

>> pred: [(x_1:obj) => (---:prop)]

>> {move 1}

33

declare eqev that x=y

>> eqev: that (x = y) {move 1}

declare predev that pred x

>> predev: that pred(x) {move 1}

postulate Substitution1 pred, eqev predev \

that pred y

>> Substitution1: [(pred_1:[(x_2:obj) => (---:

>> prop)]),

>> (.x_1:obj),(.y_1:obj),(eqev_1:that (.x_1

>> = .y_1)),(predev_1:that pred_1(.x_1))

>> => (---:that pred_1(.y_1))]

>> {move 0}

postulate Substitution2 eqev predev that \

pred y

>> Substitution2: [(.x_1:obj),(.y_1:obj),(eqev_1:

>> that (.x_1 = .y_1)),(.pred_1:[(x_2:obj)

>> => (---:prop)]),

>> (predev_1:that .pred_1(.x_1)) => (---:

>> that .pred_1(.y_1))]

>> {move 0}

In addition to reflexivity already given, we need subsitution of equals for
equals. Other properties of equality are derived.

Lestrade execution:

clearcurrent

34

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

declare eqev that x=y

>> eqev: that (x = y) {move 1}

define Symmeq eqev: Substitution1 [y=>y=x] \

eqev Reflexive x

>> Symmeq: [(.x_1:obj),(.y_1:obj),(eqev_1:that

>> (.x_1 = .y_1)) => (Substitution1([(y_2:

>> obj) => ((y_2 = .x_1):prop)]

>> ,eqev_1,Reflexive(.x_1)):that (.y_1 =

>> .x_1))]

>> {move 0}

The use of variable binding terms makes this proof of symmetry of equality
very compact, and perhaps a bit mysterious.

35

3 Type Theory and the Curry Howard Isomor-
phism

36

4 Set Theory

In this section we discuss the implementation of the usual untyped foundations
of mathematics using the theory of sets. The Lestrade implementation is not
strictly speaking untyped, since while all the sets are of sort obj, the machinery
of proof involves complex evidence types as usual.

4.1 Russell’s Paradox

We begin by implementing set theory carelessly, and coming up against the
paradox of Russell.

Lestrade execution:

clearcurrent

open

declare x obj

>> x: obj {move 2}

declare pred [x=>prop] \

>> pred: [(x_1:obj) => (---:prop)]

>> {move 2}

postulate setof pred obj

>> setof: [(pred_1:[(x_2:obj) => (---:prop)])

>> => (---:obj)]

>> {move 1}

We declare the set constructor which takes any predicate of objects to the
associated set of objects (itself supposed to be an object).

Lestrade execution:

37

declare y obj

>> y: obj {move 2}

postulate E x y prop

>> E: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 1}

We declare the membership relation on objects.

Lestrade execution:

declare inev1 that x E setof pred

>> inev1: that (x E setof(pred)) {move 2}

postulate Comp1 inev1 that pred x

>> Comp1: [(.x_1:obj),(.pred_1:[(x_2:obj)

>> => (---:prop)]),

>> (inev1_1:that (.x_1 E setof(.pred_1)))

>> => (---:that .pred_1(.x_1))]

>> {move 1}

We declare one side of the comprehension scheme: from evidence for φ(a),
get evidence for a ∈ {x | φ(x)}.

Lestrade execution:

declare inev2 that pred x

>> inev2: that pred(x) {move 2}

38

postulate Comp2 x inev2 that x E setof \

pred

>> Comp2: [(x_1:obj),(.pred_1:[(x_2:obj)

>> => (---:prop)]),

>> (inev2_1:that .pred_1(x_1)) => (---:

>> that (x_1 E setof(.pred_1)))]

>> {move 1}

We declare the other side of the comprehension scheme: from evidence for
a ∈ {x | φ(x)} get evidence for φ(a).

Lestrade execution:

define Russell : setof [x=> ~(x E x)] \

>> Russell: [(---:obj)]

>> {move 1}

We define the Russell class, and begin the proof forthwith.

Lestrade execution:

open

declare rhyp that Russell E Russell

>> rhyp: that (Russell E Russell) {move

>> 3}

Let R be the Russell class. Our aim is to prove R 6∈ R. Our strategy is to
assume R ∈ R (rhyp) and reason to a contradiction.

Lestrade execution:

39

define line1 rhyp : Comp1 rhyp

>> line1: [(rhyp_1:that (Russell E Russell))

>> => (---:that ~((Russell E Russell)))]

>> {move 2}

By an application of Comp1 we reason from R ∈ R = {x | x 6∈ x} to R 6∈ R.

Lestrade execution:

define line2 rhyp : Mp rhyp line1 rhyp

>> line2: [(rhyp_1:that (Russell E Russell))

>> => (---:that ??)]

>> {move 2}

By modus ponens we obtain an absurdity (recalling that negation is defined
in terms of implication).

Lestrade execution:

close

define rfact : Negintro line2

>> rfact: [(---:that ~((Russell E Russell)))]

>> {move 1}

By the rule of negation introduction developed above (a variant of the deduction
theorem) we get a proof of R 6∈ R from the function line2 defined in the just-
closed block.

Lestrade execution:

define rfact2 : Fixprop(Russell E Russell, \

40

Comp2 Russell rfact)

>> rfact2: [(---:that (Russell E Russell))]

>> {move 1}

From R 6∈ R we get by the comprehension axiom Comp2 evidence for R ∈
{x | x 6∈ x} = R. The use of Fixprop is cosmetic, so that the result displayed
is R ∈ R rather than R ∈ {x | x 6∈ x}.

Lestrade execution:

close

define Rparadox Comp1, Comp2 : Mp rfact2 \

rfact

>> Rparadox: [(.E_1:[(x_2:obj),(y_2:obj) =>

>> (---:prop)]),

>> (.setof_1:[(pred_3:[(x_4:obj) => (---:

>> prop)])

>> => (---:obj)]),

>> (Comp1_1:[(.x_5:obj),(.pred_5:[(x_6:obj)

>> => (---:prop)]),

>> (inev1_5:that (.x_5 .E_1 .setof_1(.pred_5)))

>> => (---:that .pred_5(.x_5))]),

>> (Comp2_1:[(x_7:obj),(.pred_7:[(x_8:obj)

>> => (---:prop)]),

>> (inev2_7:that .pred_7(x_7)) => (---:

>> that (x_7 .E_1 .setof_1(.pred_7)))])

>> => ((((.setof_1([(x_11:obj) => (~((x_11

>> .E_1 x_11)):prop)])

>> .E_1 .setof_1([(x_12:obj) => (~((x_12

>> .E_1 x_12)):prop)]))

>> Fixprop Comp2_1(.setof_1([(x_13:obj) =>

>> (~((x_13 .E_1 x_13)):prop)]),

>> [(x_14:obj) => (~((x_14 .E_1 x_14)):prop)]

>> ,Negintro([(rhyp_17:that (.setof_1([(x_18:

>> obj) => (~((x_18 .E_1 x_18)):prop)])

>> .E_1 .setof_1([(x_19:obj) => (~((x_19

>> .E_1 x_19)):prop)]))

>>) => ((rhyp_17 Mp Comp1_1(.setof_1([(x_22:

>> obj) => (~((x_22 .E_1 x_22)):prop)]),

>> [(x_23:obj) => (~((x_23 .E_1 x_23)):

41

>> prop)]

>> ,rhyp_17)):that ??)]))

>>) Mp Negintro([(rhyp_26:that (.setof_1([(x_27:

>> obj) => (~((x_27 .E_1 x_27)):prop)])

>> .E_1 .setof_1([(x_28:obj) => (~((x_28

>> .E_1 x_28)):prop)]))

>>) => ((rhyp_26 Mp Comp1_1(.setof_1([(x_31:

>> obj) => (~((x_31 .E_1 x_31)):prop)]),

>> [(x_32:obj) => (~((x_32 .E_1 x_32)):

>> prop)]

>> ,rhyp_26)):that ??)]))

>> :that ??)]

>> {move 0}

We conducted all our previous reasoning in a block (perhaps we were suspi-
cious), so on emerging from this block we are able to present a function taking
any axioms Comp1 and Comp2 (from which E and setof can be determined im-
plicitly) declared as in the block to a proof of the absurd. The display for
Rparadox is longer than displays above because definitions local to the block
are expanded.

We have two observations about this argument. One point is that there is no
threat here to the foundations of reason. Our formalization makes it clear that
there is a mistake, which is in essence the casual assumption that every function
from obj to prop can be identified with an object. We are firm in Lestrade about
separating objects from functions, and no such identification can be smuggled
in without an explicit postulate, which we show here cannot be safely assumed.
At the roots of the paradox lies a confusion not just between different sorts of
entity, but between different species of entity, from the Lestrade standpoint.

Our second observation is that not all features of a working set theory are
implemented: in this initial development we give only those declarations needed
to show the contradiction. There will be more ingredients (such as extensionality
principles) in the set theory we implement below.

4.2 Zermelo set theory

In this section we are more confident that we will not get into trouble, so we
boldly make our declarations outside a sheltering block. We will roughly speak-
ing follow the original presentation of Zermelo’s axioms.

Lestrade execution:

clearcurrent

42

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

postulate E x y prop

>> E: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 0}

declare u obj

>> u: obj {move 1}

declare uinx that u E x

>> uinx: that (u E x) {move 1}

We declare the membership relation.

Lestrade execution:

open

declare z obj

>> z: obj {move 2}

declare zinx that z E x

43

>> zinx: that (z E x) {move 2}

declare ziny that z E y

>> ziny: that (z E y) {move 2}

postulate ext1 zinx that z E y

>> ext1: [(.z_1:obj),(zinx_1:that (.z_1 E

>> x)) => (---:that (.z_1 E y))]

>> {move 1}

postulate ext2 ziny that z E x

>> ext2: [(.z_1:obj),(ziny_1:that (.z_1 E

>> y)) => (---:that (.z_1 E x))]

>> {move 1}

close

postulate Extensionality uinx ext1, ext2 \

that x=y

>> Extensionality: [(.u_1:obj),(.x_1:obj),(uinx_1:

>> that (.u_1 E .x_1)),(.y_1:obj),(ext1_1:

>> [(.z_2:obj),(zinx_2:that (.z_2 E .x_1))

>> => (---:that (.z_2 E .y_1))]),

>> (ext2_1:[(.z_3:obj),(ziny_3:that (.z_3

>> E .y_1)) => (---:that (.z_3 E .x_1))])

>> => (---:that (.x_1 = .y_1))]

>> {move 0}

These are declarations for weak extensionality: objects with elements that
have the same elements are equal.

Lestrade execution:

44

postulate Empty obj

>> Empty: obj {move 0}

postulate Emptyisempty x : that ~(x E Empty)

>> Emptyisempty: [(x_1:obj) => (---:that ~((x_1

>> E Empty)))]

>> {move 0}

define Isset x : (x = Empty) V (Exists [u \

=> u E x]) \

>> Isset: [(x_1:obj) => (((x_1 = Empty) V Exists([(u_2:

>> obj) => ((u_2 E x_1):prop)]))

>> :prop)]

>> {move 0}

We declare the empty set (the first object introduced in Zermelo’s axiom of
elementary sets) and define the notion of set: an object is a set if it is the empty
set or has an element.

Below we prove the theorem that two sets with the same elements are equal
(the weak extensionality theorem).

The typesonly command suppresses the display of the bodies of definitions:
as we will see at the end, the terms representing components of this proof get
quite large. The string ... signals omitted definition bodies. This directive
is reversed by showdefs.

Lestrade execution:

typesonly

open

45

declare x1 obj

>> x1: obj {move 2}

open

declare y1 obj

>> y1: obj {move 3}

Choose arbitrary x and y for universal generalization.

Lestrade execution:

open

declare u1 obj

>> u1: obj {move 4}

declare extev that (Isset x1) & \

(Isset y1) & (Forall[u1 => (u1 \

E x1) <-> u1 \

E y1]) \

>> extev: that (Isset(x1) & (Isset(y1)

>> & Forall([(u1_1:obj) => (((u1_1

>> E x1) <-> (u1_1 E y1)):prop)]))

>>) {move 4}

Assume that x and y are sets and have the same elements.

Lestrade execution:

define line1 extev : Simplification1 \

extev

46

>> line1: [(extev_1:that (Isset(x1)

>> & (Isset(y1) & Forall([(u1_2:

>> obj) => (((u1_2 E x1) <->

>> (u1_2 E y1)):prop)]))

>>)) => (---:that Isset(x1))]

>> {move 3}

define line2 extev : Simplification1 \

(Simplification2 extev)

>> line2: [(extev_1:that (Isset(x1)

>> & (Isset(y1) & Forall([(u1_2:

>> obj) => (((u1_2 E x1) <->

>> (u1_2 E y1)):prop)]))

>>)) => (---:that Isset(y1))]

>> {move 3}

define extstat extev : Simplification2(Simplification2 \

extev)

>> extstat: [(extev_1:that (Isset(x1)

>> & (Isset(y1) & Forall([(u1_2:

>> obj) => (((u1_2 E x1) <->

>> (u1_2 E y1)):prop)]))

>>)) => (---:that Forall([(u1_5:

>> obj) => (((u1_5 E x1) <->

>> (u1_5 E y1)):prop)]))

>>]

>> {move 3}

Extract important pieces of the assumption. line1 is the assumption that x is a
set, line2 is the assumption that y is a set and extstat is the assumption that the
two sets have the same elements. These will appear with extev as an argument.

The strategy of the proof that follows is a proof by cases.

Lestrade execution:

% our goal is to prove x1=y1 by cases

open

declare line3 that x1 = Empty

47

>> line3: that (x1 = Empty) {move

>> 5}

% prove x=y

Case I: assume that x is the empty set. This falls apart into two cases depending
on the nature of y;

Lestrade execution:

% now prove by cases in Isset y1

open

declare line5 that y1 = Empty

>> line5: that (y1 = Empty) {move

>> 6}

Case IA: y is empty.

Lestrade execution:

define line9 line5 : Symmeq \

line5

>> line9: [(line5_1:that (y1

>> = Empty)) => (---:that

>> (Empty = y1))]

>> {move 5}

define line10 line5 : Substitution2 \

(line9 line5,line3)

>> line10: [(line5_1:that (y1

>> = Empty)) => (---:that

>> (x1 = y1))]

>> {move 5}

48

% prove x=y

close

define line11 line3 : Deduction \

line10

>> line11: [(line3_1:that (x1 =

>> Empty)) => (---:that ((y1

>> = Empty) -> (x1 = y1)))]

>> {move 4}

The implication expressing the conclusion of Case IA is readily proved using the
substitution property of equality.

Lestrade execution:

open

declare u2 obj

>> u2: obj {move 6}

declare line7 that Exists[u2 \

=>u2 E y1] \

>> line7: that Exists([(u2_1:

>> obj) => ((u2_1 E y1):prop)])

>> {move 6}

This is case IB, where y is inhabited. Actually, the way I prove this is absurd,
though it works. I never use the fact that x is empty, which would allow a quick proof
by contradiction (I shoudl repair this). On the other hand, this proof makes the point
that the weak extensionality theorem actually does not depend on the fact that Empty
has no elements.

The following block sets things up for a proof by existential generalization.

Lestrade execution:

49

open

declare w obj

>> w: obj {move 7}

declare wev that w E y1

>> wev: that (w E y1) {move

>> 7}

Provide a witness to the existential statement that y is inhabited.

Lestrade execution:

define xxx wev:Ui (extstat \

extev,w)

>> xxx: [(.w_1:obj),(wev_1:

>> that (.w_1 E y1)) =>

>> (---:that ((.w_1 E x1)

>> <-> (.w_1 E y1)))]

>> {move 6}

define xxx2 wev :Simplification2 \

xxx wev

>> xxx2: [(.w_1:obj),(wev_1:

>> that (.w_1 E y1)) =>

>> (---:that ((.w_1 E y1)

>> -> (.w_1 E x1)))]

>> {move 6}

define xxx3 wev: Mp wev \

xxx2 wev

>> xxx3: [(.w_1:obj),(wev_1:

>> that (.w_1 E y1)) =>

>> (---:that (.w_1 E x1))]

50

>> {move 6}

Argue that x is inhabited (which of course we also know is false, but we never use
this in the current proof plan!)

We follow with the obvious structured proof that x and y are equal by extension-
ality, since x is inhabited and x and y have the same elements.

Lestrade execution:

open

declare w1 obj

>> w1: obj {move 8}

declare wev1 that w1 \

E x1

>> wev1: that (w1 E x1)

>> {move 8}

define line89 wev1 : \

Ui (extstat extev,w1)

>> line89: [(.w1_1:obj),

>> (wev1_1:that (.w1_1

>> E x1)) => (---:that

>> ((.w1_1 E x1) <->

>> (.w1_1 E y1)))]

>> {move 7}

define line90 wev1 : \

Simplification1 line89 \

wev1

>> line90: [(.w1_1:obj),

>> (wev1_1:that (.w1_1

>> E x1)) => (---:that

>> ((.w1_1 E x1) ->

>> (.w1_1 E y1)))]

51

>> {move 7}

define line91 wev1 : \

Mp wev1 line90 wev1

>> line91: [(.w1_1:obj),

>> (wev1_1:that (.w1_1

>> E x1)) => (---:that

>> (.w1_1 E y1))]

>> {move 7}

declare wev2 that w1 \

E y1

>> wev2: that (w1 E y1)

>> {move 8}

define lineb89 wev2 \

: Ui (extstat extev, \

w1)

>> lineb89: [(.w1_1:obj),

>> (wev2_1:that (.w1_1

>> E y1)) => (---:that

>> ((.w1_1 E x1) <->

>> (.w1_1 E y1)))]

>> {move 7}

define line92 wev2 : \

Simplification2 lineb89 \

wev2

>> line92: [(.w1_1:obj),

>> (wev2_1:that (.w1_1

>> E y1)) => (---:that

>> ((.w1_1 E y1) ->

>> (.w1_1 E x1)))]

>> {move 7}

52

define line93 wev2 : \

Mp wev2 line92 wev2

>> line93: [(.w1_1:obj),

>> (wev2_1:that (.w1_1

>> E y1)) => (---:that

>> (.w1_1 E x1))]

>> {move 7}

close

define line94 wev: Extensionality \

(xxx3 wev, line91, line93)

>> line94: [(.w_1:obj),(wev_1:

>> that (.w_1 E y1)) =>

>> (---:that (x1 = y1))]

>> {move 6}

What appears above is the natural structured argument that because of the hy-
pothesis that x and y have the same elements, we can produce the functions from w
and evidence that w ∈ x to evidence that w ∈ y and from w and evidence that w ∈ y
to evidence that w ∈ x which are needed as input to the extensionality axiom. The
information that x is inhabited is also needed, and supplied. Again, this whole case
could be proved much more compactly!

Lestrade execution:

close

define line95 line7 : Eg line7 \

line94

>> line95: [(line7_1:that Exists([(u2_2:

>> obj) => ((u2_2 E y1):

>> prop)]))

>> => (---:that (x1 = y1))]

>> {move 5}

close

53

define line96 line3: Deduction \

line95

>> line96: [(line3_1:that (x1 =

>> Empty)) => (---:that (Exists([(u2_12:

>> obj) => ((u2_12 E y1):prop)])

>> -> (x1 = y1)))]

>> {move 4}

We formally complete Case IB.

Lestrade execution:

define line97 line3: Cases (line2 \

extev ,line11 line3, line96 \

line3)

>> line97: [(line3_1:that (x1 =

>> Empty)) => (---:that (x1 =

>> y1))]

>> {move 4}

close

define line98 extev : Deduction \

line97

>> line98: [(extev_1:that (Isset(x1)

>> & (Isset(y1) & Forall([(u1_2:

>> obj) => (((u1_2 E x1) <->

>> (u1_2 E y1)):prop)]))

>>)) => (---:that ((x1 = Empty)

>> -> (x1 = y1)))]

>> {move 3}

We formally complete the proof of Case I.

Lestrade execution:

open

declare u2 obj

54

>> u2: obj {move 5}

declare line99 that Exists[u2=>u2 \

E x1] \

>> line99: that Exists([(u2_1:obj)

>> => ((u2_1 E x1):prop)])

>> {move 5}

This is Case II, x is inhabited, which we prove directly without further case anal-
ysis.

Lestrade execution:

open

declare w obj

>> w: obj {move 6}

declare wev that w E x1

>> wev: that (w E x1) {move 6}

We introduce a witness to the hypothesis for Case II, setting up for a proof of the
goal by existential generalization.

Lestrade execution:

open

declare w1 obj

>> w1: obj {move 7}

55

declare wev1 that w1 E \

x1

>> wev1: that (w1 E x1) {move

>> 7}

declare wev2 that w1 E \

y1

>> wev2: that (w1 E y1) {move

>> 7}

define zonk w1 : Ui (extstat \

extev,w1)

>> zonk: [(w1_1:obj) => (---:

>> that ((w1_1 E x1) <->

>> (w1_1 E y1)))]

>> {move 6}

define zonk1 w1: Simplification1 \

(zonk w1)

>> zonk1: [(w1_1:obj) => (---:

>> that ((w1_1 E x1) ->

>> (w1_1 E y1)))]

>> {move 6}

define zonk2 w1:Simplification2 \

(zonk w1)

>> zonk2: [(w1_1:obj) => (---:

>> that ((w1_1 E y1) ->

>> (w1_1 E x1)))]

>> {move 6}

define zonk3 wev1 : Mp \

wev1 zonk1 w1

56

>> zonk3: [(.w1_1:obj),(wev1_1:

>> that (.w1_1 E x1)) =>

>> (---:that (.w1_1 E y1))]

>> {move 6}

define zonk4 wev2 : Mp \

wev2 zonk2 w1

>> zonk4: [(.w1_1:obj),(wev2_1:

>> that (.w1_1 E y1)) =>

>> (---:that (.w1_1 E x1))]

>> {move 6}

close

define zonk5 wev: Extensionality \

wev zonk3, zonk4

>> zonk5: [(.w_1:obj),(wev_1:

>> that (.w_1 E x1)) => (---:

>> that (x1 = y1))]

>> {move 5}

The hypothesis that x and y have the same elements suffice to postulate the func-
tions from w and evidence that w ∈ x to evidence that w ∈ y and from w and evidence
that w ∈ y to evidence that w ∈ x which are needed as input to the extensionality
axiom: the further input that x is inhabited is provided as the hypothesis of Case II.

Lestrade execution:

close

define zonk6 line99 : Eg line99 \

zonk5

>> zonk6: [(line99_1:that Exists([(u2_2:

>> obj) => ((u2_2 E x1):prop)]))

>> => (---:that (x1 = y1))]

>> {move 4}

close

57

define zonk7 extev : Deduction zonk6

>> zonk7: [(extev_1:that (Isset(x1)

>> & (Isset(y1) & Forall([(u1_2:

>> obj) => (((u1_2 E x1) <->

>> (u1_2 E y1)):prop)]))

>>)) => (---:that (Exists([(u2_12:

>> obj) => ((u2_12 E x1):prop)])

>> -> (x1 = y1)))]

>> {move 3}

We formally complete the proof of the implication expressing Case II, first applying
existential generalization then deduction.

Lestrade execution:

define zonk8 extev: Cases(line1 \

extev, line98 extev, zonk7 extev)

>> zonk8: [(extev_1:that (Isset(x1)

>> & (Isset(y1) & Forall([(u1_2:

>> obj) => (((u1_2 E x1) <->

>> (u1_2 E y1)):prop)]))

>>)) => (---:that (x1 = y1))]

>> {move 3}

close

define zonk9 y1: Deduction zonk8

>> zonk9: [(y1_1:obj) => (---:that ((Isset(x1)

>> & (Isset(y1_1) & Forall([(u1_42:

>> obj) => (((u1_42 E x1) <-> (u1_42

>> E y1_1)):prop)]))

>>) -> (x1 = y1_1)))]

>> {move 2}

close

define zonk10 x1: Ug zonk9

58

>> zonk10: [(x1_1:obj) => (---:that Forall([(y1_46:

>> obj) => (((Isset(x1_1) & (Isset(y1_46)

>> & Forall([(u1_47:obj) => (((u1_47

>> E x1_1) <-> (u1_47 E y1_46)):

>> prop)]))

>>) -> (x1_1 = y1_46)):prop)]))

>>]

>> {move 1}

close

showdefs

define Weakext : Ug zonk10

>> Weakext: [(Ug([(x1_1:obj) => (Ug([(y1_6:obj)

>> => (Deduction([(extev_8:that (Isset(x1_1)

>> & (Isset(y1_6) & Forall([(u1_9:

>> obj) => (((u1_9 E x1_1) <->

>> (u1_9 E y1_6)):prop)]))

>>)) => (Cases(Simplification1(extev_8),

>> Deduction([(line3_12:that (x1_1

>> = Empty)) => (Cases(Simplification1(Simplification2(extev_8)),

>> Deduction([(line5_16:that

>> (y1_6 = Empty)) => ((Symmeq(line5_16)

>> Substitution2 line3_12):

>> that (x1_1 = y1_6))]),

>> Deduction([(line7_19:that

>> Exists([(u2_20:obj) =>

>> ((u2_20 E y1_6):prop)]))

>> => ((line7_19 Eg [(.w_22:

>> obj),(wev_22:that (.w_22

>> E y1_6)) => (Extensionality((wev_22

>> Mp Simplification2((Simplification2(Simplification2(extev_8))

>> Ui .w_22))),[(.w1_26:

>> obj),(wev1_26:that

>> (.w1_26 E x1_1))

>> => ((wev1_26 Mp Simplification1((Simplification2(Simplification2(extev_8))

>> Ui .w1_26))):that

>> (.w1_26 E y1_6))]

>> ,[(.w1_30:obj),(wev2_30:

>> that (.w1_30 E y1_6))

>> => ((wev2_30 Mp Simplification2((Simplification2(Simplification2(extev_8))

>> Ui .w1_30))):that

>> (.w1_30 E x1_1))])

>> :that (x1_1 = y1_6))])

>> :that (x1_1 = y1_6))]))

59

>> :that (x1_1 = y1_6))]),

>> Deduction([(line99_35:that Exists([(u2_36:

>> obj) => ((u2_36 E x1_1):

>> prop)]))

>> => ((line99_35 Eg [(.w_38:

>> obj),(wev_38:that (.w_38

>> E x1_1)) => (Extensionality(wev_38,

>> [(.w1_39:obj),(wev1_39:

>> that (.w1_39 E x1_1))

>> => ((wev1_39 Mp Simplification1((Simplification2(Simplification2(extev_8))

>> Ui .w1_39))):that (.w1_39

>> E y1_6))]

>> ,[(.w1_43:obj),(wev2_43:

>> that (.w1_43 E y1_6))

>> => ((wev2_43 Mp Simplification2((Simplification2(Simplification2(extev_8))

>> Ui .w1_43))):that (.w1_43

>> E x1_1))])

>> :that (x1_1 = y1_6))])

>> :that (x1_1 = y1_6))]))

>> :that (x1_1 = y1_6))])

>> :that ((Isset(x1_1) & (Isset(y1_6)

>> & Forall([(u1_47:obj) => (((u1_47

>> E x1_1) <-> (u1_47 E y1_6)):prop)]))

>>) -> (x1_1 = y1_6)))])

>> :that Forall([(y1_2:obj) => (((Isset(x1_1)

>> & (Isset(y1_2) & Forall([(u1_3:obj)

>> => (((u1_3 E x1_1) <-> (u1_3

>> E y1_2)):prop)]))

>>) -> (x1_1 = y1_2)):prop)]))

>>])

>> :that Forall([(x1_48:obj) => (Forall([(y1_49:

>> obj) => (((Isset(x1_48) & (Isset(y1_49)

>> & Forall([(u1_50:obj) => (((u1_50

>> E x1_48) <-> (u1_50 E y1_49)):

>> prop)]))

>>) -> (x1_48 = y1_49)):prop)])

>> :prop)]))

>>]

>> {move 0}

The proof of the main result is completed by cases, then by deduction, then
by universal generalizations. The reason why we issued the typesonly direc-
tive before the proof should be evident (we maliciously invoked the showdefs

directive which reverses typesonly before displaying this proof).
The proof is actually quite straightforward and is approached in a natural

structured way. The Lestrade output is colossal due to definition expansion; we
want to consider whether structuring it differently might reduce the apparent

60

size. This might also be a strong suggestion that there should be a display
setting which modifies the display of defined objects to show only their sorts
(which are what actually interest us here). It is worth noting that this proof is
unlikely to appear in a final version of this paper!

We now proceed to complete Zermelo’s axiom of elementary sets (not without
further excursions).

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

declare z obj

>> z: obj {move 1}

postulate pair x y obj

>> pair: [(x_1:obj),(y_1:obj) => (---:obj)]

>> {move 0}

postulate pair1 x y that x E pair x y

>> pair1: [(x_1:obj),(y_1:obj) => (---:that

>> (x_1 E (x_1 pair y_1)))]

>> {move 0}

postulate pair2 x y that y E pair x y

61

>> pair2: [(x_1:obj),(y_1:obj) => (---:that

>> (y_1 E (x_1 pair y_1)))]

>> {move 0}

declare zev that z E pair x y

>> zev: that (z E (x pair y)) {move 1}

postulate pair3 zev that (z = x) V z = y

>> pair3: [(.z_1:obj),(.x_1:obj),(.y_1:obj),

>> (zev_1:that (.z_1 E (.x_1 pair .y_1)))

>> => (---:that ((.z_1 = .x_1) V (.z_1 =

>> .y_1)))]

>> {move 0}

These are the basic axioms for the unordered pair.

Lestrade execution:

define singleton x: pair x x

>> singleton: [(x_1:obj) => ((x_1 pair x_1):

>> obj)]

>> {move 0}

postulate the x obj

>> the: [(x_1:obj) => (---:obj)]

>> {move 0}

postulate the1 x that the(singleton x) = \

x

62

>> the1: [(x_1:obj) => (---:that (the(singleton(x_1))

>> = x_1))]

>> {move 0}

postulate the2 x that ~(Exists[y=>x = singleton \

y]) \

-> (the x) = Empty

>> the2: [(x_1:obj) => (---:that (~(Exists([(y_2:

>> obj) => ((x_1 = singleton(y_2)):prop)]))

>> -> (the(x_1) = Empty)))]

>> {move 0}

define Pair x y: singleton x pair x pair \

y

>> Pair: [(x_1:obj),(y_1:obj) => ((singleton(x_1)

>> pair (x_1 pair y_1)):obj)]

>> {move 0}

We introduce related notions.
We define the singleton set, which is, oddly to modern eyes, introduced in

an independent clause in Zermelo’s original axiom.
We introduce the definite description operator (in a form bounded to sets);

this can appear appropriately here as it is a left inverse of the singleton operator.
it would be definable (using primitives introduced later) if we did not allow
atoms.

We introduce the Kuratowski pair, an anachronism, because not known to
Zermelo, but very useful.

We prove that the Kuratowski ordered pair is indeed an ordered pair.

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}

63

declare y obj

>> y: obj {move 1}

declare z obj

>> z: obj {move 1}

declare w obj

>> w: obj {move 1}

typesonly

open

declare pairsequal that (x Pair y) = (z \

Pair w)

>> pairsequal: that ((x Pair y) = (z Pair

>> w)) {move 2}

We prove a frequently useful lemma.

Lestrade execution:

declare p prop

>> p: prop {move 2}

declare porp that p V p

64

>> porp: that (p V p) {move 2}

declare pp that p

>> pp: that p {move 2}

define Porp porp : Cases (porp,Deduction \

[pp=>pp] \

, Deduction [pp=>pp]) \

>> Porp: [(.p_1:prop),(porp_1:that (.p_1

>> V .p_1)) => (---:that .p_1)]

>> {move 1}

We introduce the assumption that (x, y) = (z, w).

Lestrade execution:

define line1 pairsequal : Substitution2 \

pairsequal, pair1 (singleton x,x pair \

y)

>> line1: [(pairsequal_1:that ((x Pair y)

>> = (z Pair w))) => (---:that (singleton(x)

>> E (z Pair w)))]

>> {move 1}

define line2 pairsequal: pair3 line1 pairsequal

>> line2: [(pairsequal_1:that ((x Pair y)

>> = (z Pair w))) => (---:that ((singleton(x)

>> = singleton(z)) V (singleton(x) = (z

>> pair w))))]

65

>> {move 1}

Since {x} ∈ {{x}, {x, y}} = {{z}, {z, w}}, we have {x} = {z} or {x} =
{z, w}. We proceed to reason by cases.

Lestrade execution:

open

% case {x}={z} -- goal is x=z

declare hyp that singleton x = singleton \

z

>> hyp: that (singleton(x) = singleton(z))

>> {move 3}

define line3 hyp : Substitution2 hyp, \

x pair1 x

>> line3: [(hyp_1:that (singleton(x) =

>> singleton(z))) => (---:that (x E

>> singleton(z)))]

>> {move 2}

define line4 hyp : pair3 line3 hyp

>> line4: [(hyp_1:that (singleton(x) =

>> singleton(z))) => (---:that ((x

>> = z) V (x = z)))]

>> {move 2}

define line5 hyp : Porp line4 hyp

>> line5: [(hyp_1:that (singleton(x) =

>> singleton(z))) => (---:that (x =

66

>> z))]

>> {move 2}

We have achieved the goal of this case.

Lestrade execution:

close

define line7 : Deduction line5

>> line7: [(---:that ((singleton(x) = singleton(z))

>> -> (x = z)))]

>> {move 1}

open

declare hyp that singleton x = z pair \

w

>> hyp: that (singleton(x) = (z pair w))

>> {move 3}

define line8 hyp : Substitution2 (Symmeq \

hyp,z pair1 w)

>> line8: [(hyp_1:that (singleton(x) =

>> (z pair w))) => (---:that (z E singleton(x)))]

>> {move 2}

define line10 hyp: Porp pair3 line8 \

hyp

>> line10: [(hyp_1:that (singleton(x)

>> = (z pair w))) => (---:that (z =

>> x))]

>> {move 2}

67

define line11 hyp: Symmeq line10 hyp

>> line11: [(hyp_1:that (singleton(x)

>> = (z pair w))) => (---:that (x =

>> z))]

>> {move 2}

close

define line12: Deduction line11

>> line12: [(---:that ((singleton(x) = (z

>> pair w)) -> (x = z)))]

>> {move 1}

define proj1 pairsequal : Cases(line2 \

pairsequal, line7, line12)

>> proj1: [(pairsequal_1:that ((x Pair y)

>> = (z Pair w))) => (---:that (x = z))]

>> {move 1}

We have proved x = z: it remains to prove y = w.

Lestrade execution:

define line13 pairsequal: Substitution2 \

(pairsequal, pair2 singleton x, x pair \

y)

>> line13: [(pairsequal_1:that ((x Pair y)

>> = (z Pair w))) => (---:that ((x pair

>> y) E (z Pair w)))]

>> {move 1}

68

define line14 pairsequal: pair3 line13 \

pairsequal

>> line14: [(pairsequal_1:that ((x Pair y)

>> = (z Pair w))) => (---:that (((x pair

>> y) = singleton(z)) V ((x pair y) =

>> (z pair w))))]

>> {move 1}

Considering {x, y} ∈ (x, y) = (z, w), we draw the conclusion that either
{x, y} = {z} or {x, y} = {z, w}, and proceed to reason by cases.

Lestrade execution:

open

declare hyp that (x pair y) = singleton \

z

>> hyp: that ((x pair y) = singleton(z))

>> {move 3}

define line15 hyp : Substitution2 hyp \

x pair1 y

>> line15: [(hyp_1:that ((x pair y) =

>> singleton(z))) => (---:that (x E

>> singleton(z)))]

>> {move 2}

define line16 hyp : Substitution2 hyp \

x pair2 y

>> line16: [(hyp_1:that ((x pair y) =

>> singleton(z))) => (---:that (y E

>> singleton(z)))]

>> {move 2}

69

define line17 hyp: Porp pair3 line15 \

hyp

>> line17: [(hyp_1:that ((x pair y) =

>> singleton(z))) => (---:that (x =

>> z))]

>> {move 2}

define line18 hyp: Porp pair3 line16 \

hyp

>> line18: [(hyp_1:that ((x pair y) =

>> singleton(z))) => (---:that (y =

>> z))]

>> {move 2}

define line19 hyp: Substitution2 Symmeq \

pairsequal, pair2 singleton \

z, z pair w

>> line19: [(hyp_1:that ((x pair y) =

>> singleton(z))) => (---:that ((z

>> pair w) E (x Pair y)))]

>> {move 2}

define line20 hyp : pair3 line19 hyp

>> line20: [(hyp_1:that ((x pair y) =

>> singleton(z))) => (---:that (((z

>> pair w) = singleton(x)) V ((z pair

>> w) = (x pair y))))]

>> {move 2}

By considering {z, w} ∈ (z, w) = (x, y), we see that {z, w} = {x} or {z, w} =
{x, y}, and yet again we reason by cases.

Lestrade execution:

70

open

declare hyp2 that (z pair w) = singleton(x)

>> hyp2: that ((z pair w) = singleton(x))

>> {move 4}

define line21 hyp2 : Substitution2 \

(Symmeq line18 hyp, \

Substitution2 (line17 hyp,hyp2))

>> line21: [(hyp2_1:that ((z pair w)

>> = singleton(x))) => (---:that

>> ((y pair w) = singleton(y)))]

>> {move 3}

define line22 hyp2: Substitution2 \

(line21 hyp2,pair2 y w)

>> line22: [(hyp2_1:that ((z pair w)

>> = singleton(x))) => (---:that

>> (w E singleton(y)))]

>> {move 3}

define line23 hyp2: Symmeq Porp \

pair3 line22 hyp2

>> line23: [(hyp2_1:that ((z pair w)

>> = singleton(x))) => (---:that

>> (y = w))]

>> {move 3}

close

71

define line24 hyp: Deduction line23

>> line24: [(hyp_1:that ((x pair y) =

>> singleton(z))) => (---:that (((z

>> pair w) = singleton(x)) -> (y =

>> w)))]

>> {move 2}

open

declare hyp2 that (z pair w) = x \

pair y

>> hyp2: that ((z pair w) = (x pair

>> y)) {move 4}

define line25 hyp2 : Substitution2 \

(Symmeq line18 hyp, \

Substitution2 (line17 hyp,hyp2))

>> line25: [(hyp2_1:that ((z pair w)

>> = (x pair y))) => (---:that ((y

>> pair w) = (y pair y)))]

>> {move 3}

define line26 hyp2: Substitution2 \

(line25 hyp2,pair2 y w)

>> line26: [(hyp2_1:that ((z pair w)

>> = (x pair y))) => (---:that (w

>> E (y pair y)))]

>> {move 3}

define line27 hyp2: Symmeq Porp \

pair3 line26 hyp2

72

>> line27: [(hyp2_1:that ((z pair w)

>> = (x pair y))) => (---:that (y

>> = w))]

>> {move 3}

close

define line28 hyp: Deduction line27

>> line28: [(hyp_1:that ((x pair y) =

>> singleton(z))) => (---:that (((z

>> pair w) = (x pair y)) -> (y = w)))]

>> {move 2}

define line29 hyp: Cases (line20 hyp, \

line24 hyp,line28 hyp)

>> line29: [(hyp_1:that ((x pair y) =

>> singleton(z))) => (---:that (y =

>> w))]

>> {move 2}

close

define line30 pairsequal : Deduction line29

>> line30: [(pairsequal_1:that ((x Pair y)

>> = (z Pair w))) => (---:that (((x pair

>> y) = singleton(z)) -> (y = w)))]

>> {move 1}

open

declare hyp that (x pair y) = z pair \

w

73

>> hyp: that ((x pair y) = (z pair w))

>> {move 3}

define line31 hyp: Substitution2 (proj1 \

pairsequal, hyp)

>> line31: [(hyp_1:that ((x pair y) =

>> (z pair w))) => (---:that ((z pair

>> y) = (z pair w)))]

>> {move 2}

define line32 hyp : Substitution2(line31 \

hyp,pair2 z y)

>> line32: [(hyp_1:that ((x pair y) =

>> (z pair w))) => (---:that (y E (z

>> pair w)))]

>> {move 2}

define line33 hyp: pair3 line32 hyp

>> line33: [(hyp_1:that ((x pair y) =

>> (z pair w))) => (---:that ((y =

>> z) V (y = w)))]

>> {move 2}

We need to show that if y = z, it follows that y = w.

Lestrade execution:

open

declare hyp2 that y=z

>> hyp2: that (y = z) {move 4}

74

define line34 hyp2: Substitution2(Symmeq \

hyp2, Substitution2(proj1 \

pairsequal,hyp))

>> line34: [(hyp2_1:that (y = z)) =>

>> (---:that ((y pair y) = (y pair

>> w)))]

>> {move 3}

define line35 hyp2 : Substitution2(Symmeq \

line34 hyp2,pair2 y w)

>> line35: [(hyp2_1:that (y = z)) =>

>> (---:that (w E (y pair y)))]

>> {move 3}

define line36 hyp2 : Symmeq Porp \

pair3 line35 hyp2

>> line36: [(hyp2_1:that (y = z)) =>

>> (---:that (y = w))]

>> {move 3}

close

define line37 hyp: Deduction line36

>> line37: [(hyp_1:that ((x pair y) =

>> (z pair w))) => (---:that ((y =

>> z) -> (y = w)))]

>> {move 2}

declare techfix that y=w

>> techfix: that (y = w) {move 3}

75

define line38 hyp: Cases (line33 hyp, \

line37 hyp, Deduction[techfix => techfix]) \

>> line38: [(hyp_1:that ((x pair y) =

>> (z pair w))) => (---:that (y = w))]

>> {move 2}

close

define line39 pairsequal : Deduction line38

>> line39: [(pairsequal_1:that ((x Pair y)

>> = (z Pair w))) => (---:that (((x pair

>> y) = (z pair w)) -> (y = w)))]

>> {move 1}

define proj2 pairsequal : Cases(line14 \

pairsequal, line30 pairsequal, line39 pairsequal)

>> proj2: [(pairsequal_1:that ((x Pair y)

>> = (z Pair w))) => (---:that (y = w))]

>> {move 1}

close

declare Pairsequal that (x Pair y) = z Pair \

w

>> Pairsequal: that ((x Pair y) = (z Pair w))

>> {move 1}

76

define Proj1 Pairsequal : proj1 Pairsequal

>> Proj1: [(.x_1:obj),(.y_1:obj),(.z_1:obj),

>> (.w_1:obj),(Pairsequal_1:that ((.x_1 Pair

>> .y_1) = (.z_1 Pair .w_1))) => (... :that

>> (.x_1 = .z_1))]

>> {move 0}

define Proj2 Pairsequal : proj2 Pairsequal

>> Proj2: [(.x_1:obj),(.y_1:obj),(.z_1:obj),

>> (.w_1:obj),(Pairsequal_1:that ((.x_1 Pair

>> .y_1) = (.z_1 Pair .w_1))) => (... :that

>> (.y_1 = .w_1))]

>> {move 0}

showdefs

We export the projection equality theorems from the block.

Lestrade execution:

declare xzev that singleton x = singleton \

z

>> xzev: that (singleton(x) = singleton(z))

>> {move 1}

define Equalsingletons x z : line7

>> Equalsingletons: [(x_1:obj),(z_1:obj) =>

>> (Deduction([(hyp_2:that (singleton(x_1)

>> = singleton(z_1))) => (Cases(pair3((hyp_2

>> Substitution2 (x_1 pair1 x_1))),Deduction([(pp_4:

>> that (x_1 = z_1)) => (pp_4:that

>> (x_1 = z_1))]),

>> Deduction([(pp_5:that (x_1 = z_1))

77

>> => (pp_5:that (x_1 = z_1))]))

>> :that (x_1 = z_1))])

>> :that ((singleton(x_1) = singleton(z_1))

>> -> (x_1 = z_1)))]

>> {move 0}

We export the lemma line7 as an independent theorem.
We now present the Axiom of Separation, the presumably safe version of

the contradictory axiom of comprehension from which Russell’s paradox can be
deduced. The idea is that a predicate determines a set, when restricted to a
previously given set.

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

declare pred [x => prop] \

>> pred: [(x_1:obj) => (---:prop)]

>> {move 1}

postulate setof x pred obj

>> setof: [(x_1:obj),(pred_1:[(x_2:obj) => (---:

>> prop)])

>> => (---:obj)]

78

>> {move 0}

postulate Sep0 x pred that Isset setof x \

pred

>> Sep0: [(x_1:obj),(pred_1:[(x_2:obj) => (---:

>> prop)])

>> => (---:that Isset((x_1 setof pred_1)))]

>> {move 0}

declare inev1 that y E x

>> inev1: that (y E x) {move 1}

declare inev2 that pred y

>> inev2: that pred(y) {move 1}

postulate Sep01 pred, inev1 inev2 that y \

E setof x pred

>> Sep01: [(pred_1:[(x_2:obj) => (---:prop)]),

>> (.y_1:obj),(.x_1:obj),(inev1_1:that (.y_1

>> E .x_1)),(inev2_1:that pred_1(.y_1)) =>

>> (---:that (.y_1 E (.x_1 setof pred_1)))]

>> {move 0}

define Sep1 inev1 inev2: Sep01 pred, inev1 \

inev2

>> Sep1: [(.y_1:obj),(.x_1:obj),(inev1_1:that

>> (.y_1 E .x_1)),(.pred_1:[(x_2:obj) =>

>> (---:prop)]),

>> (inev2_1:that .pred_1(.y_1)) => (Sep01(.pred_1,

>> inev1_1,inev2_1):that (.y_1 E (.x_1 setof

>> .pred_1)))]

79

>> {move 0}

declare inev3 that y E setof x pred

>> inev3: that (y E (x setof pred)) {move 1}

postulate Sep2 inev3 that y E x

>> Sep2: [(.y_1:obj),(.x_1:obj),(.pred_1:[(x_2:

>> obj) => (---:prop)]),

>> (inev3_1:that (.y_1 E (.x_1 setof .pred_1)))

>> => (---:that (.y_1 E .x_1))]

>> {move 0}

postulate Sep3 inev3 that pred y

>> Sep3: [(.y_1:obj),(.x_1:obj),(.pred_1:[(x_2:

>> obj) => (---:prop)]),

>> (inev3_1:that (.y_1 E (.x_1 setof .pred_1)))

>> => (---:that .pred_1(.y_1))]

>> {move 0}

We prove that for every set x, there is y such that y 6∈ x.

Lestrade execution:

define Notin x : setof x [y=> ~(y E y)] \

>> Notin: [(x_1:obj) => ((x_1 setof [(y_2:obj)

>> => (~((y_2 E y_2)):prop)])

>> :obj)]

>> {move 0}

80

open

declare hyp that Notin x E x

>> hyp: that (Notin(x) E x) {move 2}

open

declare hyp2 that Notin x E Notin x

>> hyp2: that (Notin(x) E Notin(x)) {move

>> 3}

define line1 hyp2 : Sep3 hyp2

>> line1: [(hyp2_1:that (Notin(x) E Notin(x)))

>> => (---:that ~((Notin(x) E Notin(x))))]

>> {move 2}

define line2 hyp2 : Mp hyp2 line1 hyp2

>> line2: [(hyp2_1:that (Notin(x) E Notin(x)))

>> => (---:that ??)]

>> {move 2}

close

define line3 : Negintro line2

>> line3: [(---:that ~((Notin(x) E Notin(x))))]

>> {move 1}

define line4 hyp: Fixprop (Notin x E Notin \

81

x,Sep1 hyp line3)

>> line4: [(hyp_1:that (Notin(x) E x)) =>

>> (---:that (Notin(x) E Notin(x)))]

>> {move 1}

define line5 hyp: Mp line4 hyp line3

>> line5: [(hyp_1:that (Notin(x) E x)) =>

>> (---:that ??)]

>> {move 1}

close

define Reallynotin x : Negintro line5

>> Reallynotin: [(x_1:obj) => (Negintro([(hyp_2:

>> that (Notin(x_1) E x_1)) => ((((Notin(x_1)

>> E Notin(x_1)) Fixprop (hyp_2 Sep1 Negintro([(hyp2_4:

>> that (Notin(x_1) E Notin(x_1)))

>> => ((hyp2_4 Mp Sep3(hyp2_4)):that

>> ??)]))

>>) Mp Negintro([(hyp2_6:that (Notin(x_1)

>> E Notin(x_1))) => ((hyp2_6 Mp Sep3(hyp2_6)):

>> that ??)]))

>> :that ??)])

>> :that ~((Notin(x_1) E x_1)))]

>> {move 0}

The theorem above is the tame local version of Russell’s paradox: for every
set x we can produce a non-member of x (quite explicitly!)

We briefly address the question as to whether the axiom implemented in
Sep1-3 is an axiom strictly speaking or a scheme. Our position is that its
status is intermediate. As long as we do not define second order quantification
(which is possible in Lestrade with suitable declarations), the logical power of
our axioms is no greater than that of the usual first order scheme (basically, as
long as the only classes (functions from obj to prop) we can postulate are the
ones which are defined using the constructions of first order logic). But if we
add more primitives allowing construction of classes in more complex ways, we
automatically get more power. In Automath, where quantification over any sort

82

is unavoidably implemented, definitions along these lines would unmistakably
give second order Zermelo. We do know how to restrict the power of separation
so that adding new constructions will not give it any more power than the first
order scheme, but use of such axioms would be laborious.

We now tackle the implementation of the axiom of power set.

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

declare z obj

>> z: obj {move 1}

define C x y : (Isset x) & Forall [z=> (z \

E x) -> z E y] \

>> C: [(x_1:obj),(y_1:obj) => ((Isset(x_1) &

>> Forall([(z_2:obj) => (((z_2 E x_1) ->

>> (z_2 E y_1)):prop)]))

>> :prop)]

>> {move 0}

postulate Pow x obj

>> Pow: [(x_1:obj) => (---:obj)]

83

>> {move 0}

declare inev that z E y

>> inev: that (z E y) {move 1}

declare inpow that y E Pow x

>> inpow: that (y E Pow(x)) {move 1}

postulate Pow1 inev inpow that z E x

>> Pow1: [(.z_1:obj),(.y_1:obj),(inev_1:that

>> (.z_1 E .y_1)),(.x_1:obj),(inpow_1:that

>> (.y_1 E Pow(.x_1))) => (---:that (.z_1

>> E .x_1))]

>> {move 0}

postulate Powb1 inpow that Isset y

>> Powb1: [(.y_1:obj),(.x_1:obj),(inpow_1:that

>> (.y_1 E Pow(.x_1))) => (---:that Isset(.y_1))]

>> {move 0}

declare sety that Isset y

>> sety: that Isset(y) {move 1}

declare infun [z,inev => that z E x] \

>> infun: [(z_1:obj),(inev_1:that (z_1 E y))

84

>> => (---:that (z_1 E x))]

>> {move 1}

postulate Pow2 sety infun that y E Pow x

>> Pow2: [(.y_1:obj),(sety_1:that Isset(.y_1)),

>> (.x_1:obj),(infun_1:[(z_2:obj),(inev_2:

>> that (z_2 E .y_1)) => (---:that (z_2

>> E .x_1))])

>> => (---:that (.y_1 E Pow(.x_1)))]

>> {move 0}

We define the subset relation and introduce basic declarations for the power
set construction. We actually have not mentioned the subset relation in the
formulation of our primitives supporting the power set: we demonstrate appro-
priate equivalences. We require that subsets not be atoms, but we do allow
atoms to have the empty set as a subset; elements of power sets are stipulated
to be sets.

Lestrade execution:

open

declare powev1 that y E Pow x

>> powev1: that (y E Pow(x)) {move 2}

declare powev2 that y C x

>> powev2: that (y C x) {move 2}

open

declare z1 obj

>> z1: obj {move 3}

85

open

declare ev1 that z1 E y

>> ev1: that (z1 E y) {move 4}

define line1 ev1 : Pow1 ev1 powev1

>> line1: [(ev1_1:that (z1 E y)) =>

>> (---:that (z1 E x))]

>> {move 3}

close

define line2 z1 : Deduction line1

>> line2: [(z1_1:obj) => (---:that ((z1_1

>> E y) -> (z1_1 E x)))]

>> {move 2}

close

define subpow1 powev1 : Fixprop (y C x, \

Conjunction(Powb1 powev1,Ug line2))

>> subpow1: [(powev1_1:that (y E Pow(x)))

>> => (---:that (y C x))]

>> {move 1}

open

declare z1 obj

>> z1: obj {move 3}

86

declare ev1 that z1 E y

>> ev1: that (z1 E y) {move 3}

define line1 z1: Ui Simplification2 \

powev2 z1

>> line1: [(z1_1:obj) => (---:that ((z1_1

>> E y) -> (z1_1 E x)))]

>> {move 2}

define line3 z1 ev1 : Mp ev1 line1 \

z1

>> line3: [(z1_1:obj),(ev1_1:that (z1_1

>> E y)) => (---:that (z1_1 E x))]

>> {move 2}

close

define subpow2 powev2 : Pow2 Simplification1 \

powev2 line3

>> subpow2: [(powev2_1:that (y C x)) => (---:

>> that (y E Pow(x)))]

>> {move 1}

close

declare Powev1 that y E Pow x

>> Powev1: that (y E Pow(x)) {move 1}

87

declare Powev2 that y C x

>> Powev2: that (y C x) {move 1}

define Subpow1 Powev1:subpow1 Powev1

>> Subpow1: [(.y_1:obj),(.x_1:obj),(Powev1_1:

>> that (.y_1 E Pow(.x_1))) => (((.y_1 C

>> .x_1) Fixprop (Powb1(Powev1_1) Conjunction

>> Ug([(z1_4:obj) => (Deduction([(ev1_5:that

>> (z1_4 E .y_1)) => ((ev1_5 Pow1 Powev1_1):

>> that (z1_4 E .x_1))])

>> :that ((z1_4 E .y_1) -> (z1_4 E .x_1)))]))

>>):that (.y_1 C .x_1))]

>> {move 0}

define Subpow2 Powev2:subpow2 Powev2

>> Subpow2: [(.y_1:obj),(.x_1:obj),(Powev2_1:

>> that (.y_1 C .x_1)) => ((Simplification1(Powev2_1)

>> Pow2 [(z1_3:obj),(ev1_3:that (z1_3 E .y_1))

>> => ((ev1_3 Mp (Simplification2(Powev2_1)

>> Ui z1_3)):that (z1_3 E .x_1))])

>> :that (.y_1 E Pow(.x_1)))]

>> {move 0}

We have presented a proof of the equivalence of membership in the power
set as defined with our given axioms with the subset relation as usually formal-
ized. We could have given these rules as the basic axioms for the power set
construction as well: we think that the ones we have given are somehow more
basic. In any event the approaches are demonstrably equivalent.

We now develop the axiom of union. In developing the primitives for union,
we were not as successful at avoiding explicit use of logical constructions as we
were with power set.

Lestrade execution:

clearcurrent

88

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

declare z obj

>> z: obj {move 1}

postulate Union x obj

>> Union: [(x_1:obj) => (---:obj)]

>> {move 0}

declare inev1 that y E z

>> inev1: that (y E z) {move 1}

declare inev2 that z E x

>> inev2: that (z E x) {move 1}

postulate Union1 inev1 inev2 that y E Union \

x

>> Union1: [(.y_1:obj),(.z_1:obj),(inev1_1:that

>> (.y_1 E .z_1)),(.x_1:obj),(inev2_1:that

>> (.z_1 E .x_1)) => (---:that (.y_1 E Union(.x_1)))]

>> {move 0}

89

declare inev3 that y E Union x

>> inev3: that (y E Union(x)) {move 1}

postulate Union2 inev3 that Exists [z=>(y \

E z) & z E x] \

>> Union2: [(.y_1:obj),(.x_1:obj),(inev3_1:that

>> (.y_1 E Union(.x_1))) => (---:that Exists([(z_2:

>> obj) => (((.y_1 E z_2) & (z_2 E .x_1)):

>> prop)]))

>>]

>> {move 0}

postulate Union3 x that Isset Union x

>> Union3: [(x_1:obj) => (---:that Isset(Union(x_1)))]

>> {move 0}

We define some basic operations of set theory (from the standpoint of un-
dergraduate students: they are actually seen to be derivative notions here).

Lestrade execution:

declare u obj

>> u: obj {move 1}

declare v obj

>> v: obj {move 1}

90

define U x y : Union (x pair y)

>> U: [(x_1:obj),(y_1:obj) => (Union((x_1 pair

>> y_1)):obj)]

>> {move 0}

define cap x y : setof x [z => z E y] \

>> cap: [(x_1:obj),(y_1:obj) => ((x_1 setof

>> [(z_2:obj) => ((z_2 E y_1):prop)])

>> :obj)]

>> {move 0}

define -- x y : setof x [z => ~(z E y)] \

>> --: [(x_1:obj),(y_1:obj) => ((x_1 setof [(z_2:

>> obj) => (~((z_2 E y_1)):prop)])

>> :obj)]

>> {move 0}

define X x y : setof ((Pow(Pow(x U y))), \

[z=>Exists[u=> Exists[v=>(u E x) & (v E \

y) & (z = (u Pair v))] \

] \

]) \

>> X: [(x_1:obj),(y_1:obj) => ((Pow(Pow((x_1

>> U y_1))) setof [(z_2:obj) => (Exists([(u_3:

>> obj) => (Exists([(v_4:obj) => (((u_3

>> E x_1) & ((v_4 E y_1) & (z_2

91

>> = (u_3 Pair v_4)))):prop)])

>> :prop)])

>> :prop)])

>> :obj)]

>> {move 0}

The union, intersection, relative difference and Cartesian product operations
of course cry out for proofs of relevant theorems.

We develop the axiom of infinity (using Zermelo’s original implementation
of the natural numbers).

Lestrade execution:

clearcurrent

declare m obj

>> m: obj {move 1}

declare n obj

>> n: obj {move 1}

postulate Nat obj

>> Nat: obj {move 0}

postulate Zeroax that Empty E Nat

>> Zeroax: that (Empty E Nat) {move 0}

declare natev that n E Nat

>> natev: that (n E Nat) {move 1}

92

postulate Succax natev that singleton n E \

Nat

>> Succax: [(.n_1:obj),(natev_1:that (.n_1 E

>> Nat)) => (---:that (singleton(.n_1) E

>> Nat))]

>> {move 0}

declare I obj

>> I: obj {move 1}

declare izeroev that Empty E I

>> izeroev: that (Empty E I) {move 1}

declare iniev that n E I

>> iniev: that (n E I) {move 1}

declare inductionev [n,iniev => that singleton \

n E I] \

>> inductionev: [(n_1:obj),(iniev_1:that (n_1

>> E I)) => (---:that (singleton(n_1) E I))]

>> {move 1}

declare iniev2 that n E I

>> iniev2: that (n E I) {move 1}

93

postulate Induction izeroev inductionev, \

iniev2 that n E Nat

>> Induction: [(.I_1:obj),(izeroev_1:that (Empty

>> E .I_1)),(inductionev_1:[(n_2:obj),(iniev_2:

>> that (n_2 E .I_1)) => (---:that (singleton(n_2)

>> E .I_1))]),

>> (.n_1:obj),(iniev2_1:that (.n_1 E .I_1))

>> => (---:that (.n_1 E Nat))]

>> {move 0}

In defining the primitives for the natural numbers, we continue our pattern
of avoiding logical constructions in the declarations of our primitives. A more
usual form of mathematical induction using quantifiers can certainly be devel-
oped, and proofs of the axioms of Peano arithmetic would be in order here.
Development of the iteration theorem would also be useful.

We now develop the axiom of choice. There is a quick and brutal way, and
the usual way.

Lestrade execution:

clearcurrent

declare x obj

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

postulate Choose x obj

>> Choose: [(x_1:obj) => (---:obj)]

>> {move 0}

94

declare inev that y E x

>> inev: that (y E x) {move 1}

postulate Choose1 inev that Choose x E x

>> Choose1: [(.y_1:obj),(.x_1:obj),(inev_1:that

>> (.y_1 E .x_1)) => (---:that (Choose(.x_1)

>> E .x_1))]

>> {move 0}

It’s that simple: provide a way to choose an element from each nonempty
set. And results about the conservative nature of global choice as an extension
of ordinary set theory suggest that this is essentially harmless. However, we
present a more cautious approach as well.

Lestrade execution:

clearcurrent

declare P obj

>> P: obj {move 1}

declare A obj

>> A: obj {move 1}

declare B obj

>> B: obj {move 1}

declare x obj

95

>> x: obj {move 1}

declare ainp that A E P

>> ainp: that (A E P) {move 1}

declare binp that B E P

>> binp: that (B E P) {move 1}

declare xina that x E A

>> xina: that (x E A) {move 1}

declare xinb that x E B

>> xinb: that (x E B) {move 1}

declare inhabited [A,ainp => that Exists[x=>x \

E A] \

] \

>> inhabited: [(A_1:obj),(ainp_1:that (A_1 E

>> P)) => (---:that Exists([(x_2:obj) =>

>> ((x_2 E A_1):prop)]))

>>]

>> {move 1}

declare pairwise [A,B,x,ainp,binp,xina,xinb \

=> that A=B] \

96

>> pairwise: [(A_1:obj),(B_1:obj),(x_1:obj),

>> (ainp_1:that (A_1 E P)),(binp_1:that (B_1

>> E P)),(xina_1:that (x_1 E A_1)),(xinb_1:

>> that (x_1 E B_1)) => (---:that (A_1 =

>> B_1))]

>> {move 1}

declare C1 obj

>> C1: obj {move 1}

declare c obj

>> c: obj {move 1}

define choiceset P C1 : Forall [c=> (c E \

C1) -> Exists[A => (A E P) & singleton \

c = A cap C1] \

] \

& Forall[A=>(A E P)-> Exists[c => (c E C1) \

& c E A] \

] \

>> choiceset: [(P_1:obj),(C1_1:obj) => ((Forall([(c_2:

>> obj) => (((c_2 E C1_1) -> Exists([(A_3:

>> obj) => (((A_3 E P_1) & (singleton(c_2)

>> = (A_3 cap C1_1))):prop)]))

>> :prop)])

>> & Forall([(A_4:obj) => (((A_4 E P_1) ->

>> Exists([(c_5:obj) => (((c_5 E C1_1)

>> & (c_5 E A_4)):prop)]))

>> :prop)]))

>> :prop)]

97

>> {move 0}

postulate Choice P, inhabited, pairwise that \

Exists[C1 => choiceset P C1] \

>> Choice: [(P_1:obj),(inhabited_1:[(A_2:obj),

>> (ainp_2:that (A_2 E P_1)) => (---:that

>> Exists([(x_3:obj) => ((x_3 E A_2):prop)]))

>>]),

>> (pairwise_1:[(A_4:obj),(B_4:obj),(x_4:

>> obj),(ainp_4:that (A_4 E P_1)),(binp_4:

>> that (B_4 E P_1)),(xina_4:that (x_4

>> E A_4)),(xinb_4:that (x_4 E B_4)) =>

>> (---:that (A_4 = B_4))])

>> => (---:that Exists([(C1_5:obj) => ((P_1

>> choiceset C1_5):prop)]))

>>]

>> {move 0}

We present the usual formulation of the axiom of choice, asserting that every
partition has a choice set.

4.3 Toward a proof of the Well-Ordering Theorem

Our aim in this section is to prove the Well-Ordering Theorem. Supporting the
proof of this theorem seems to have been the immediate motivation for Zermelo’s
presentation of his axioms in 1908. We will emulate Zermelo in attempting a
proof of the theorem which makes no use of the ordered pair: Zermelo did not
know that ordered pairs were representable in set theory; this was revealed by
Norbert Wiener in 1914.

Since we are not going to represent relations as sets of ordered pairs, we have
to explain how we are going to represent them.

Lestrade execution:

clearcurrent

declare x obj

98

>> x: obj {move 1}

declare y obj

>> y: obj {move 1}

declare z obj

>> z: obj {move 1}

declare R [x,y => prop] \

>> R: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 1}

define transitive R : Forall [x=>Forall [y=>Forall \

[z=>((x R y) & (y R z))->x R z] \

] \

] \

>> transitive: [(R_1:[(x_2:obj),(y_2:obj) =>

>> (---:prop)])

>> => (Forall([(x_3:obj) => (Forall([(y_4:

>> obj) => (Forall([(z_5:obj) => ((((x_3

>> R_1 y_4) & (y_4 R_1 z_5)) ->

>> (x_3 R_1 z_5)):prop)])

>> :prop)])

>> :prop)])

>> :prop)]

>> {move 0}

99

declare A obj

>> A: obj {move 1}

define field R, A: Forall[x=>Forall[y=> (x \

R y) -> (x E A) & y E A] \

] \

>> field: [(R_1:[(x_2:obj),(y_2:obj) => (---:

>> prop)]),

>> (A_1:obj) => (Forall([(x_3:obj) => (Forall([(y_4:

>> obj) => (((x_3 R_1 y_4) -> ((x_3

>> E A_1) & (y_4 E A_1))):prop)])

>> :prop)])

>> :prop)]

>> {move 0}

declare fldev that field R,A

>> fldev: that field(R,A) {move 1}

define reflexive fldev : Forall[x=>(x E A) \

-> x R x] \

>> reflexive: [(.R_1:[(x_2:obj),(y_2:obj) =>

>> (---:prop)]),

>> (.A_1:obj),(fldev_1:that field(.R_1,.A_1))

>> => (Forall([(x_3:obj) => (((x_3 E .A_1)

>> -> (x_3 .R_1 x_3)):prop)])

>> :prop)]

>> {move 0}

100

define relrep x y A: (y E Union A) & Forall[z=> \

((z E A) & (y E z))-> x E z] \

>> relrep: [(x_1:obj),(y_1:obj),(A_1:obj) =>

>> (((y_1 E Union(A_1)) & Forall([(z_2:obj)

>> => ((((z_2 E A_1) & (y_1 E z_2)) ->

>> (x_1 E z_2)):prop)]))

>> :prop)]

>> {move 0}

declare u obj

>> u: obj {move 1}

define seg fldev u : setof A [y=>y R u] \

>> seg: [(.R_1:[(x_2:obj),(y_2:obj) => (---:

>> prop)]),

>> (.A_1:obj),(fldev_1:that field(.R_1,.A_1)),

>> (u_1:obj) => ((.A_1 setof [(y_3:obj) =>

>> ((y_3 .R_1 u_1):prop)])

>> :obj)]

>> {move 0}

define segset fldev u : Sep0 A [y=>y R u] \

>> segset: [(.R_1:[(x_2:obj),(y_2:obj) => (---:

>> prop)]),

>> (.A_1:obj),(fldev_1:that field(.R_1,.A_1)),

101

>> (u_1:obj) => ((.A_1 Sep0 [(y_3:obj) =>

>> ((y_3 .R_1 u_1):prop)])

>> :that Isset((.A_1 setof [(y_4:obj) =>

>> ((y_4 .R_1 u_1):prop)]))

>>)]

>> {move 0}

define Setrel fldev : setof (Pow A, [z=>Exists \

[x=>z=seg fldev x] \

]) \

>> Setrel: [(.R_1:[(x_2:obj),(y_2:obj) => (---:

>> prop)]),

>> (.A_1:obj),(fldev_1:that field(.R_1,.A_1))

>> => ((Pow(.A_1) setof [(z_3:obj) => (Exists([(x_4:

>> obj) => ((z_3 = (fldev_1 seg x_4)):

>> prop)])

>> :prop)])

>> :obj)]

>> {move 0}

We present the basic definitions supporting an implementation of quasi-
orders (reflexive, transitive relations) as sets, making no use of ordered pairs. A
quasi-order R on a set A is implemented as the set of segments

segR(x) = {y ∈ A : yRx}

in the relation on the set. If the relation R is represented by the set r, we have
xRy ↔ y ∈

⋃
r ∧ (∀z ∈ r : y ∈ z → x ∈ z). Our first aim is to prove that all

quasi-orders are represented by sets in this way.

Lestrade execution:

clearcurrent

open

declare x obj

102

>> x: obj {move 2}

declare y obj

>> y: obj {move 2}

declare z obj

>> z: obj {move 2}

declare R [x,y=> prop] \

>> R: [(x_1:obj),(y_1:obj) => (---:prop)]

>> {move 2}

declare transev that transitive R

>> transev: that transitive(R) {move 2}

declare A obj

>> A: obj {move 2}

declare fldev that field R, A

>> fldev: that field(R,A) {move 2}

declare reflev that reflexive fldev

103

>> reflev: that reflexive(fldev) {move 2}

open

declare u obj

>> u: obj {move 3}

declare relev1 that x R y

>> relev1: that (x R y) {move 3}

declare relev2 that x relrep y, Setrel \

fldev

>> relev2: that relrep(x,y,Setrel(fldev))

>> {move 3}

In text, we will refer to Setrel fldev as r, the set representing the reflexive,
transitive relation R with field A. Our first aim is to show that if xRy (relev1)
then y ∈

⋃
r ∧ (∀z ∈ r : y ∈ z → x ∈ z). We begin by observing that y ∈

⋃
r

because y ∈ segR(y) ∈ r.

Lestrade execution:

define line1 : Ui (Ui fldev x, y)

>> line1: [(---:that ((x R y) -> ((x E

>> A) & (y E A))))]

>> {move 2}

define line2 relev1 : Mp relev1 line1

>> line2: [(relev1_1:that (x R y)) =>

104

>> (---:that ((x E A) & (y E A)))]

>> {move 2}

define line3 relev1 : Simplification1 \

line2 relev1

>> line3: [(relev1_1:that (x R y)) =>

>> (---:that (x E A))]

>> {move 2}

define line4 relev1 : Simplification2 \

line2 relev1

>> line4: [(relev1_1:that (x R y)) =>

>> (---:that (y E A))]

>> {move 2}

define line5 : Ui reflev y

>> line5: [(---:that ((y E A) -> (y R

>> y)))]

>> {move 2}

define line7 relev1 : Mp line4 relev1 \

line5

>> line7: [(relev1_1:that (x R y)) =>

>> (---:that (y R y))]

>> {move 2}

define line8 relev1 : Fixprop(y E seg \

fldev y, Sep01 ([u=>u R y] \

, line4 relev1, line7 relev1))

>> line8: [(relev1_1:that (x R y)) =>

>> (---:that (y E (fldev seg y)))]

105

>> {move 2}

We need to show that segR(y) ∈ P(A).

Lestrade execution:

define line9 : segset fldev y

>> line9: [(---:that Isset((A setof [(y_1:

>> obj) => ((y_1 R y):prop)]))

>>)]

>> {move 2}

declare v obj

>> v: obj {move 3}

declare insegev that v E seg fldev \

y

>> insegev: that (v E (fldev seg y)) {move

>> 3}

define line10 : Fixprop((seg fldev \

y) E Pow A , Pow2 line9 [v,insegev \

=> Simplification1 Mp(Sep3 insegev, Ui(Ui fldev v,y))]) \

>> line10: [(---:that ((fldev seg y) E

>> Pow(A)))]

>> {move 2}

define line11 : Eib [u=> (fldev seg \

106

y) = fldev seg u] \

Reflexive (fldev seg y)

>> line11: [(---:that Exists([(u_2:obj)

>> => (((fldev seg y) = (fldev seg

>> u_2)):prop)]))

>>]

>> {move 2}

define line12 : Fixprop((fldev seg \

y) E Setrel fldev, Sep1 (line10,line11))

>> line12: [(---:that ((fldev seg y) E

>> Setrel(fldev)))]

>> {move 2}

define line13 relev1 : Union1 line8 \

relev1 line12

>> line13: [(relev1_1:that (x R y)) =>

>> (---:that (y E Union(Setrel(fldev))))]

>> {move 2}

107

