Computer Implementation of a Philosophy of Mathematics

M. Randall Holmes

Nov 23 2017, 1 pm

1 Introduction

This paper is an account of an attempt to provide a computer implementation of a philosophy of mathematics. The result has been an actual piece of software, the Lestrade Type Inspector, implementing a logical framework which we refer to as Lestrade. We hope that we may be forgiven for the play on literary associations of our name.

Contents

1 Introduction 1
1.1 Philosophical considerations 1
1.2 Compact formal description of the framework (not without philo- sophical considerations) 3
1.2.1 Sorts 3
1.2.2 The Lestrade context: the system of "moves" 4
1.2.3 Descriptions of the basic user commands 5
1.2.4 The matter of terms with bound variables 8
2 Logic 9
3 Type Theory and the Curry Howard Isomorphism 36
4 Set Theory 37
4.1 Russell's Paradox 37
4.2 Zermelo set theory 42
4.3 Toward a proof of the Well-Ordering Theorem 98

1.1 Philosophical considerations

A number of ideas fit together to form the philosophy which leads to Lestrade: we will focus on the idea, going back to Aristotle, that infinities are potential rather than actual. This is combined with the idea that mathematical proofs
are themselves mathematical objects which need to be taken into account in our metaphysics: this is embodied in a version of the Curry-Howard isomorphism.

This might sound like a story which will end in a postulateivist account of mathematics. It does not, or more accurately, doesn't have to. Lestrade supports the usual classical mathematics of Dedekind, Peano, Cantor, Zermelo and so forth. The usual set theory $Z F C$ with classical logic is readily implemented under Lestrade. The interpretation of what we are talking about when we reason in classical set theory may be seen to be somewhat different. Of course, postulateive theories can also readily be implemented under Lestrade.

We will begin our critique of mathematics based on the idea that infinities should be potential rather than actual by considering functions. The usual interpretation of a function in modern classical set theory is as a usually infinite table of values given all at once. We discover what $f(x)$ is by finding the element y such that $\langle x, y\rangle \in f$. This concept competes informally (as, for example, in pedagogy) with an older idea: a function is a rule or method which gives an output when an input (of the right sort) is presented to it. For the student of calculus, the function $\left(x \mapsto x^{2}+1\right)$ is embodied in the finite expression $x^{2}+1$ which tells you what to do to the input x (presumably a real number) to get the outcome. Mathematicians have studied this sort of embodiment of functions as expressions with slots in them for the inputs, notably in the λ calculus of Church, though Frege's treatment of functions (which led to paradox due to inattention to types) and Russell's treatment of propositional functions in Principia Mathematica are older, and similar in spirit.

We come up against the actual versus the potential character of infinite totalities in logic when considering the universal quantifier. Is $(\forall x \in D: \phi(x))$ best understood as asserting $\phi(a)$ for each $a \in D$, in effect asserting an infinitary conjunction the size of D ? We instead take the view that the meaning of $\phi(x)$ is that we can assert $\phi(a)$ whenever an $a \in D$ is presented to us. This is embodied in a treatment using suitable sorted objects and functions: our evidence for $(\forall x \in D: \phi(x))$ is not understood as a conglomeration of evidence for each $\phi(a)$ (a possibly vast actual infinity of items of evidence) but as a function F which, given any $a \in D$, returns a value $F(a)$ which is evidence for $\phi(a)$, under our modest concept of a function as an entity which returns an output when presented with an input.

We maintain a proper respect for the idea that entities come in various sorts. We also remember that functions (or sets) can cause difficulties if we do not properly pay attention to sorts. The propositional function which takes absolutely any unary predicate $\phi(x)$ (itself a function from the universe to propositions) to $\neg \phi(\phi)$ (which we naively suppose makes sense because we are considering a predicate ϕ applicable to all entities whatsoever) may be called ρ in honor of Russell, and then $\rho(\rho)$ sadly expands to $\neg \rho(\rho)$. Oh dear.

We are also attentive to the possibility of dependent sorting of functions: the example of the universal quantifier supports this. As evidence for the proposition $(\forall x \in D: \phi(x))$ we postulate a function F which takes as input an inhabitant a of D and provides as output evidence for the assertion $\phi(a)$, which we will see we regard as an inhabitant of a sort (that $\phi(a))$: this output sort depends on
the value a of the input.

1.2 Compact formal description of the framework (not without philosophical considerations)

This subsection contains an essentially complete description of the framework, though it may be very hard to digest it without looking ahead at actual examples of Lestrade constructions in the following sections.

1.2.1 Sorts

We outline our system of sorts, which implements some of our philosophical prejudices. The things we talk about in Lestrade we call entities when we are being entirely noncommittal about their nature. Entities are partitioned into two species, objects and functions, each of the species being further partitioned into sorts.

We enumerate the object sorts.
We provide a sort prop of propositions, and for each p of type prop we provide a sort (that p) of evidence for p : if $p p$ is of sort that p, we know that p is true. It might seem that we should rather call the inhabitants of evidence sorts (that p) "proofs" of p, but this involves committing to a particular philosophical view. When we assume p for the sake of argument, we postulate evidence for p (an element of that p): to presume that such evidence must actually be a proof is to presume a postulateivist view.

Some mathematicians want to consider a world of mathematical objects which is unsorted, and some want to consider a world of mathematical objects organized into sorts. We provide support for both views. Lestrade provides a sort obj of untyped mathematical objects, a sort type of "type labels", and for each type label τ a sort (in τ) whose inhabitants we term "objects of type τ ". Of course, whenever a new proposition p is constructed, we get a new sort that p and whenever a new type label τ is constructed we get a new sort (in τ), these sorts being properly called "types" in Lestrade usage.

That we separate propositions and evidence for propositions from types and their inhabitants does not mean that we do not recognize the parallelism between them embodied in the Curry-Howard isomorphism, of which we will have more to say. We are acknowledging pragmatically that sorts inhabited by proofs and sorts inhabited by objects are used differently, and that in a particular theory we may want to treat propositions and their inhabitants uniformly in a way in which we do not want to treat types and their inhabitants. The same approach was taken in Automath, which we regard as the parent of Lestrade.

We also make the side remark that we refer to the objects in the sort type as "type labels" rather than "types" because we want to discourage thinking of these objects as collections with their inhabitants as members, and also because the type proper associated with a type label τ is the sort (in τ): we systematically avoid any coincidence in notation or terminology for entities and sorts.

We now describe the function sorts. A function sort takes the form

$$
\left[\left(x_{1}: \tau_{1}\right), \ldots,\left(x_{n}: \tau_{n}\right) \Rightarrow(-: \tau)\right]
$$

In this notation the x_{i} 's are variables (bound in the notation) with each x_{i} of sort τ_{i} (which may be either an object or a function sort). The function is understood to take arguments t_{i} of the sorts indicated by τ_{i} and to present output of sort τ, an object sort. Further, each sort τ_{j} may depend on variables x_{i} with $i<j$, and the output sort τ may depend on any or all of the input variables x_{i}.

At this point we have described the entire sort system of Lestrade. The rest of the story is postulation of new objects and functions of previously given sorts (which may via the constructors that and in generate new sorts) and determination of the consequences of postulating these constructions.

The very compact description of function sorts embodies a number of philosophical design decisions. In Lestrade, we do not view functions as "first-class entities": that status belongs to objects. The status of functions might be analogous to that of proper classes in familiar set theories which allow such, with the further refinement that a class (non-set) would further be viewed as distinct from a set with the same extension, and obtained from it by an explicit construction: the class would be a function and the set a correlated object. When we declare a function, we are always declaring a function which takes arguments (objects and/or functions) and returns an object. This may be thought of as reversing the "currying" operation on functions as far as possible. When we define a function, it is always via an expression for an object containing object and/or function parameters, in keeping with our rule or expression based metaphorical view of functions. This is not to say that we regard the possible action of functions as limited by our means of forming expressions: primitive declarations of functions simply declare a black box (an oracle as it were) that takes arguments of given dependent sorts and returns an object output of a given dependent sort. Lestrade does not assume (though it may be able to express, and therefore accept as user postulates in theories) validity of arguments about functions based on induction on the structure of the expressions we can currently define: it is the default position of Lestrade that functions yet to be postulated might have unexpected behavior, unless this is specifically excluded by user declared postulates.

It is also worth noting that we have essentially presented dependently typed functions as the only built in type construction. We do not provide product or union types, nor do we provide the more general inductive or co-inductive types, though all of these can be implemented in the Lestrade framework with suitable declarations by the user. In this, Lestrade is similar to Automath.

1.2.2 The Lestrade context: the system of "moves"

We want to maintain that we are never considering more than a concrete finite collection of actual entities at any point in a Lestrade construction. We achieve generality not by supposing that we can make propositions about all entities (of
a given sort) at once, but by a device which allows us to introduce "arbitrary" entities of a sort and speak about them, then export what can be shown about "arbitrary" entities to any specific entity of that sort that we may postulate. This is handled by the device of "moves" which we now describe.

The declarations at any particular moment in a Lestrade construction are organized into moves $0,1, \ldots, i, i+1$, where i is a concrete finite number. There are always at least two moves (so all four of the listed moves are present, though they may not all be distinct). Move 0 contains the entities to which the user is permanently committed. Moves $0,1, \ldots, i$ are inhabited by entities which the user currently takes to be constant. Move i is referred to as the "last move" or "the current move". Move $i+1$ is referred to as "the next move". About objects at the next move, one knows no more than can be divined from their sorts; they can be thought of as "arbitrary" or "variable". On each move, there is an order, which is the order in which the entities were declared: an entity or its sort can only depend on entities appearing at earlier moves or appearing in the same move earlier in the order on that move.

We can modify the move structure. We can open a new move, incrementing the parameter i, creating a new move $i+1$ with no declarations in it, and construing the former next move as the new last move. We can close the next move by decrementing i (if i is positive), discarding all declarations in the next move entirely, and reconstruing the former last move as the new next move. We can at any point clear all declarations in the next move (this last is provided as a primitive operation because declarations in move 1 would otherwise be permanent). A refinement that we will not explore now is the ability to save moves by name before closing them, so that they can later be reopened in the same context if desired.

1.2.3 Descriptions of the basic user commands

The way this actually works is best described operationally. The user can execute a number of operations in the basic Lestrade model.

A variable, in all contexts, means an entity which is declared but not defined, and whose declaration appears in the next move.

The user can declare a new object variable in the next move at any point. This new object is placed last in the order on the next move. The sort of this object may depend of course on anything already declared, including variables already declared in the same move. ${ }^{1}$

The user may declare a new function, taking as arguments object and function variables in the next move given in the order in which they were declared (this is a cheap way to enforce dependency conditions) and giving output of a given object type. The argument list must include all variables on which the sort of the output or any of the sorts of the inputs depend. ${ }^{2}$ This function is

[^0]added to the last move, at the end of the order on the last move: we postulate the function as a new (relative) primitive constant in world i, not as a variable in move $i+1$ (we will see later how to introduce function variables in the next move). This is how to add axioms and primitive notions to a Lestrade theory.

In the special case where the argument list is null, we are in effect declaring an object constant in the last move. This is the only way to declare an object in move 0 as a primitive.

The user may define a function, giving an argument list of variables from the next move (in the order in which they were declared) and providing an object term depending only on those variables as the output, from which the sort of the output is of course deduced. The argument list must include all variables on which the object term, its sort, or the sorts of any of the inputs depend. ${ }^{3}$ This function is added to the last move at the end of the order on the last move.

This is a natural point at which to briefly (as possible) remark on the structure of complex object terms and how to type them (though complex object terms could already have appeared in declarations of new functions or even object variables, as arguments of the that and in constructors). Terms in the basic Lestrade language are either atomic (and in this case have been declared and have sort which can be looked up) or application terms $f\left(t_{1}, \ldots, t_{n}\right)$, where f is a function and each t_{i} is either an object term or an atomic function term. The sort of f being $\left[\left(x_{1}: \tau_{1}\right), \ldots,\left(x_{m}: \tau_{m}\right) \Rightarrow(-, \tau)\right]$, it is required for the term to be well-formed that $m=n$, and further the sort of t_{1} must be equivalent to $\tau_{1} \bmod$ expansion of definitions (if not, the term is ill-formed because illsorted) and then the sort of $f\left(t_{1}, \ldots, t_{n}\right)$ will be $\tau\left[t_{1} / x_{1}\right]$ if $n=1$ and otherwise will be the same as the sort of $f^{*}\left(t_{2}, \ldots, t_{n}\right)$, where f^{*} is postulated with sort $\left[\left(x_{2}: \tau_{2}\left[t_{1} / x_{1}\right]\right), \ldots,\left(x_{n}: \tau_{n}\left[t_{1} / x_{1}\right]\right) \Rightarrow\left(-: \tau\left[t_{1} / x_{1}\right]\right)\right]$.

A function defined by a definition $f\left(x_{1}, \ldots, x_{n}\right)=T$, where each x_{i} has sort τ_{i} and T has sort τ, with the usual allowed dependencies of sort, has sort $\left[\left(x_{1}: \tau_{1}\right), \ldots,\left(x_{n}: \tau_{n}\right) \Rightarrow(-, \tau)\right]$ and is represented internally as a λ-term

$$
\left[\left(x_{1}: \tau_{1}\right), \ldots,\left(x_{n}: \tau_{n}\right) \Rightarrow(T: \tau)\right]
$$

(where T of course may depend on any or all of the x_{i} 's) and $f\left(t_{1}, \ldots, t_{n}\right)$ will reduce to $T\left[t_{1} / x_{1}\right]$ if it sorts correctly and $n=1$, and otherwise (if it types correctly) reduces to $f^{*}\left(t_{2}, \ldots, t_{n}\right)$ (which we then continue to reduce), where f^{*} represents

$$
\left[\left(x_{2}: \tau_{2}\left[t_{1} / x_{1}\right]\right), \ldots,\left(x_{n}: \tau_{n}\left[t_{1} / x_{1}\right]\right) \Rightarrow\left(T\left[t_{1} / x_{1}\right]: \tau\left[t_{1} / x_{1}\right]\right)\right]
$$

In all of these notations, $U[t / x]$ represents the result of substitution of the term t for the variable x in the term U, with the usual issues due to the binding of variables in function sorts and λ-terms. ${ }^{4}$

[^1]In the special case where the argument list is null, we are in effect defining an object notation in the last move. To prove a theorem p is to define an object of sort that p, under Lestrade, so proof as an activity has been handled, as a species of definition. It is possible to introduce objects by definition in move 0 , and in fact theorems would be expected to be objects of evidence types defined at move 0 . Objects of evidence types defined at moves of higher index presumably depend on objects which are variable from the move 0 standpoint, representing postulated objects or assumed hypotheses.

We can arrange to have function variables in the next move. This is arranged by opening a new move, declaring variables of the desired input types, declaring a new function of the desired sort, then closing the new move, leaving a non-defined function declared in the next move, usable as a function variable. (Advanced features allow one-line declarations of function variables without opening a new move.)

When a defined constant or function is present in the next move (it was of course necessarily defined at a point when the current next move was the last move) and it is used in a definition or declaration, it is necessary to eliminate the defined notion from any declaration or definition being recorded in the last move (because any information about the meaning of the defined identifier would vanish if the next move were closed, which we are free to do at any time). This is done in the case of constants and in the case of functions appearing in applied position by expanding the definitions. Functions appearing as arguments are replaced by anonymous λ-terms. In the basic Lestrade model, there is no reason for a user even to be able to write an anonymous λ-term: it is always possible using the move system to introduce a function as it were by a definition $f(x)=$ $x^{2}+1$ rather than via a notation like $\left(x \mapsto x^{2}+1\right)$, though it is possible (an advanced feature added on top of the basic model) for a user to enter λ-terms as arguments in Lestrade expressions. The strategy would then be to always refer to the function using the name f : when this name passes out of scope due to the move in which it was declared being closed, any occurrences of f as an argument would be replaced by an automatically generated λ-term: these would only appear in recorded sort information. Where a substitution would put an automatically generated λ-term in applied position, a definitional expansion occurs (a β-reduction, as it were); there is no provision for a λ-term to appear anywhere but in argument position either in user-entered text or in Lestrade output.

At this point we have described all the essential operations in the basic model of Lestrade. We claim that this is a framework in principle adequate for the practice of mathematics in any theory whatsoever. We will support this claim by presenting examples, and we will also try to explain what the possibility of implementing classical theories under Lestrade might tell us about alternative ways of interpreting what these theories are telling us. We should add that we are ourselves quite friendly to a classical Platonist interpretation of mathematics: we are very interested in the fact that theories usually taken as presupposing the Platonist view can apparently be supported on the metaphysically much more parsimonious basis of (our interpretation of) Lestrade.

1.2.4 The matter of terms with bound variables

The basic Lestrade model does not require the user ever to use terms with bound variables. They are supported, however. A user may enter function terms as arguments appearing in Lestrade object terms, and the user may declare a function variable with type a given function sort term. The form of a userentered function term is $\left[x_{1}, \ldots, x_{n} \Rightarrow T\right]$, where the x_{i} 's are variables appearing in the next move and T is an object term, and the form of a user-entered function sort term is $\left[x_{1}, \ldots, x_{n} \Rightarrow \tau\right]$, where the x_{i} 's are variables appearing in the next move and τ is an object sort term. Notice that no form of sort inference or explicit assignment of sorts to variables in a term is supported.

The reference of a function term $\left[x_{1}, \ldots, x_{n} \Rightarrow T\right]$ is the same as the reference of a new atomic function term with declaration information

$$
\left[\left(x_{1}^{*}: \tau_{1}^{*}\right), \ldots,\left(x_{n}^{*}: \tau_{n}^{*}\right) \Rightarrow\left(T^{*}, \tau^{*}\right)\right]
$$

where T^{*} and τ^{*} are obtained by replacing each x_{i} with x_{i}^{*} in T and τ respectively, and each τ_{j}^{*} is obtained by replacing each x_{i} for which $i<j$ with x_{i}^{*} in τ_{j} (notice that τ_{1}^{*} is simply τ_{1}; we write it with a star just because everything is to be starred). There is no restriction on the order in which the variables x_{i} appear in the next move: correct dependency structure is enforced by the starring process. Such a term can appear only as an argument: when a substitution would put it in applied position, definitional expansion takes place (the same thing can happen with automatically generated λ-terms created when function identifiers go out of scope). Similarly, the reference of a function term $\left[x_{1}, \ldots, x_{n} \Rightarrow \tau\right]$ is the same as that of the function sort notation $\left[\left(x_{1}^{*}: \tau_{1}^{*}\right), \ldots,\left(x_{n}^{*}: \tau_{n}^{*}\right) \Rightarrow\left(-, \tau^{*}\right)\right]$. The starring process signals the peculiarity of variable binding terms from the standpoint of the basic Lestrade model: variables in the next move are being in effect cloned to serve as variables in a move or moves of higher index which are not officially actually opened.

The role of explicitly bound variables in the move model is a bit unexpected. The difficulty is that these variables, if one constructed the same function terms or function sort terms in the basic model, would actually refer to variables in moves of higher index (one additional move for each nested bracket in such a term). In fact, careful consideration should reveal that this is what is actually happening: one should consider the bound variables to be variables from further moves "cloned" from variables made available in the next move.

It is demonstrable that anything postulateible using bound variable terms can be constructed in the basic model, and that anything postulateible in the basic model can be constructed using bound variable terms without ever opening a move with higher index than 1.

2 Logic

In this section we discuss the implementation of usual notions of logic and proof strategies under Lestrade. This and subsequent sections include actual dialogue with the Lestrade Type Inspector, which may help to make the very abstract discussion in the first section more concrete.

We begin by providing ourselves with some propositional variables.

```
Lestrade execution:
```

```
declare p prop
>> p: prop {move 1}
declare q prop
>> q: prop {move 1}
```

The declare command implements the user operation of declaring object variables in the next move.

```
Lestrade execution:
postulate & p q prop
>> &: [(p_1:prop),(q_1:prop) => (---:prop)]
>> {move 0}
postulate -> p q prop
>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]
>> {move 0}
```

We declare the operations of conjunction and implication. At this point all we know of them is the types of their input and output. The postulate command implements the user operation of declaring a new function or object.

Lestrade execution:

```
declare pp that p
>> pp: that p {move 1}
declare qq that q
>> qq: that q {move 1}
declare pq that p & q
>> pq: that (p & q) {move 1}
```

postulate Conjunction $p p$ qq that p \& q
>> Conjunction: [(.p_1:prop), (pp_1:that .p_1),
>> (.q_1:prop),(qq_1:that .q_1) => (---:that
>> (.p_1 \& .q_1))]
> \{move 0\}
postulate Simplification1 pq that p
>> Simplification1: [(.p_1:prop),(.q_1:prop),
>> (pq_1:that (.p_1 \& .q_1)) => (---:that
>> .p_1)]
>> \{move 0\}

```
postulate Simplification2 pq that q
>> Simplification2: [(.p_1:prop),(.q_1:prop),
>> (pq_1:that (.p_1 & .q_1)) => (---:that
>> .q_1)]
>> {move 0}
```

In these lines, we declare the basic logical operations handling conjunction. This reveals some features in Lestrade which are not described in the basic model. Note that the term language does handle infix notation. Note that Conjunction and Simplification1/2 have additional deduced arguments not shown in the command lines declaring them. From evidence pp for p and evidence $q q$ for q , we do get a proof of p \& q , but Lestrade notices that Conjunction is also a function of p and q : but from the sorts of any arguments pp and qq supplied, we can deduce the values of the implicit arguments p and q .

```
Lestrade execution:
define Conjcomm pq : Conjunction(Simplification2 \
    pq,Simplification1 pq)
>> Conjcomm: [(.p_1:prop),(.q_1:prop),(pq_1:
>> that (.p_1 & .q_1)) => ((Simplification2(pq_1)
>> Conjunction Simplification1(pq_1)):that
>> (.q_1 & .p_1))]
>> {move 0}
```

Here is our first exercise in proof, presenting commutativity of conjunction as a rule of inference. The define command implements the user operation of defining a function or object. It is worth noting in reading the Lestrade response in this dialogue that Lestrade will always write a function with two inputs (the first of which is not a function) in infix notation: Conjunction is used as an infix in the reported notation for the type of Conjcomm.

```
Lestrade execution:
```

declare pthenq that p -> q
>> pthenq: that (p -> q) \{move 1\}
postulate Mp pp pthenq that q
>> Mp: [(.p_1:prop),(pp_1:that .p_1),(.q_1:prop),
>> (pthenq_1:that (.p_1 -> .q_1)) => (---:
>> that .q_1)]
>> \{move 0\}

Here is the logical rule of modus ponens, our basic rule for using an implication. The rule for proving an implication, which we give next, is metaphysically more profound.

```
Lestrade execution:
open
    declare pp2 that p
>> pp2: that p {move 2}
    postulate Ded pp2 that q
>> Ded: [(pp2_1:that p) => (---:that q)]
>> {move 1}
    close
postulate Deduction Ded that p->q
>> Deduction: [(.p_1:prop),(.q_1:prop),(Ded_1:
>> [(pp2_2:that .p_1) => (---:that .q_1)])
>> => (---:that (.p_1 -> .q_1))]
>> {move 0}
declare ded2 [pp=>that q] \
>> ded2: [(pp_1:that p) => (---:that q)]
>> {move 1}
```

```
postulate Deduction2 ded2 that p->q
```

postulate Deduction2 ded2 that p->q
>> Deduction2: [(.p_1:prop),(.q_1:prop),(ded2_1:
>> Deduction2: [(.p_1:prop),(.q_1:prop),(ded2_1:
>> [(pp_2:that .p_1) => (---:that .q_1)])
>> [(pp_2:that .p_1) => (---:that .q_1)])
>> => (---:that (.p_1 -> .q_1))]
>> => (---:that (.p_1 -> .q_1))]
>> {move 0}

```
>> {move 0}
```

The open command carries out the user operation of opening a new next move. close closes this move. In between the open and close command we see the construction of a function from evidence for p to evidence for q. The primitive function Deduction takes any such function to evidence for $p \rightarrow q$. We do not simply identify proofs of $p \rightarrow q$ with functions from proofs of p to proofs of q, as is often done, because our sort system forbids us to identify objects and functions.

This is our first example of the process of declaring a function variable.
I then demonstrate how advanced features allow demonstration of an equivalent function Deduction2 without opening a new move (by using one-line declaration of a function variable using a function sort term with variable binding).

Lestrade execution:

```
open
    declare pp2 that p
>> pp2: that p {move 2}
    define propid pp2 : pp2
>> propid: [(pp2_1:that p) => (---:that p)]
>> {move 1}
    close
define Taut1 p : Deduction propid
>> Taut1: [(p_1:prop) => (Deduction([(pp2_2:
>> that p_1) => (pp2_2:that p_1)])
>> :that (p_1 -> p_1))]
>> {move 0}
```

define Taut2 p : Deduction [pp => pp] \}

```
>> Taut2: [(p_1:prop) => (Deduction([(pp_2:that
>> p_1) => (pp_2:that p_1)])
>> :that (p_1 -> p_1))]
>> {move 0}
open
    declare pq1 that p & q
>> pq1: that (p & q) {move 2}
    define conjcomm pq1 : Conjcomm pq1
>> conjcomm: [(pq1_1:that (p & q)) => (---:
>> that (q & p))]
>> {move 1}
    close
define Conjcomm2 p q : Deduction conjcomm
>> Conjcomm2: [(p_1:prop),(q_1:prop) => (Deduction([(pq1_2:
>> that (p_1 & q_1)) => (Conjcomm(pq1_2):
>> that (q_1 & p_1))])
>> :that ((p_1 & q_1) -> (q_1 & p_1)))]
>> {move 0}
```

In this paragraph, we first prove the tautology $P \rightarrow P$ in two different ways. The first proof follows the basic model (except for taking advantage of implicit argument inference). The second proof uses a user-entered λ-term. There is a certain philosophical tension in the use of the λ-term: it reads the types of its bound variables from the types of the variables of the same shapes in move 1 , but as we can see from the explicit version, it really should be reading them from move 2, which is never opened. The idea is that one should suppose that variables are being cloned from the next move into deeper moves never actually
opened in the course of reading a λ-term.
We then prove $(P \wedge Q) \rightarrow(Q \wedge P)$. A subtle point is that we could not have issued the command Deduction Conjcomm above, even though superficially it might seem that Conjcomm does exactly the same thing as conjcomm. The issue is that Conjcomm also has p and q as hidden arguments, so it is not actually of the right sort to be fed to Deduction.

Lestrade execution:
clearcurrent
declare A prop
>> A: prop \{move 1\}

```
declare B prop
>> B: prop {move 1}
```

```
declare C prop
>> C: prop {move 1}
% prove ((A -> B) & (B -> C)) -> (A -> C)
open
    declare hyp1 that (A -> B) & (B -> C)
>> hyp1: that ((A -> B) & (B -> C)) {move
>> 2}
    define line1 hyp1 : Simplification1 hyp1
>> line1: [(hyp1_1:that ((A -> B) & (B ->
```

```
>>
>>
define line2 hyp1 : Simplification2 hyp1
>>
>>
>>
open
    declare hyp2 that A
        hyp2: that A {move 3}
    define line3 hyp2 : Mp hyp2 (line1 \
            hyp1)
            line3: [(hyp2_1:that A) => (---:that
                    B)]
                    {move 2}
    define line4 hyp2 : Mp (line3 hyp2, \
            line2 hyp1)
            line4: [(hyp2_1:that A) => (---:that
                    C)]
                    {move 2}
        close
define line5 hyp1 : Deduction line4
```

```
>> line5: [(hyp1_1:that ((A -> B) & (B ->
>> C))) => (---:that (A -> C))]
>> {move 1}
    close
define Transimp A B C : Deduction line5
    Transimp: [(A_1:prop),(B_1:prop),(C_1:prop)
>> => (Deduction([(hyp1_2:that ((A_1 -> B_1)
>> & (B_1 -> C_1))) => (Deduction([(hyp2_3:
>> that A_1) => (((hyp2_3 Mp Simplification1(hyp1_2))
>> Mp Simplification2(hyp1_2)):that
>> C_1)])
>> :that (A_1 -> C_1))])
>> :that (((A_1 -> B_1) & (B_1 -> C_1)) ->
>> (A_1 -> C_1)))]
>> {move 0}
```

The text above demonstrates how the move structure of Lestrade can be used to implement argument under hypotheses.

```
Lestrade execution:
```

```
define <-> A B : (A -> B) & B -> A
>> <->: [(A_1:prop),(B_1:prop) => (((A_1 ->
>> B_1) & (B_1 -> A_1)):prop)]
>> {move 0}
```

We move next to disjunction.

```
Lestrade execution:
clearcurrent
declare p prop
>> p: prop {move 1}
```

```
declare q prop
>> q: prop {move 1}
postulate V p q prop
>> V: [(p_1:prop),(q_1:prop) => (---:prop)]
>> {move 0}
declare pp that p
>> pp: that p {move 1}
declare qq that q
>> qq: that q {move 1}
postulate Addition2 p qq that p V q
>> Addition2: [(p_1:prop),(.q_1:prop),(qq_1:
>> that .q_1) => (---:that (p_1 V .q_1))]
>> {move 0}
postulate Addition1 q pp that p V q
>> Addition1: [(q_1:prop),(.p_1:prop),(pp_1:
>> that .p_1) => (---:that (.p_1 V q_1))]
>> {move 0}
```

declare pq that p V q

```
>> pq: that (p V q) {move 1}
declare r prop
>> r: prop {move 1}
declare case1 that p->r
>> case1: that (p -> r) {move 1}
declare case2 that q->r
>> case2: that (q -> r) {move 1}
postulate Cases pq case1 case2 that r
>> Cases: [(.p_1:prop),(.q_1:prop),(pq_1:that
>> (.p_1 V .q_1)),(.r_1:prop),(case1_1:that
>> (.p_1 -> .r_1)),(case2_1:that (.q_1 ->
>> .r_1)) => (---:that .r_1)]
>> {move 0}
```

We present postulateive rules for negation.
Lestrade execution:
postulate ?? prop
>> ??: prop \{move 0\}
define ~p : p -> ??
>> ~: [(p_1:prop) => ((p_1 -> ??):prop)]

```
declare absurd that ??
>> absurd: that ?? {move 1}
postulate Panic p absurd : that p
>> Panic: [(p_1:prop),(absurd_1:that ??) =>
>> (---:that p_1)]
>> {move 0}
```

?? is a canonical false statement, which we will write \perp when typeset. We define $\neg P$ as $P \rightarrow \perp$ and adopt the rule that a false statement implies anything. And we indicate how to make our logic classical.

```
Lestrade execution:
declare maybe that ~ ~ p
>> maybe: that ~(~ (p)) {move 1}
postulate Dneg maybe that p
>> Dneg: [(.p_1:prop),(maybe_1:that ~(~(.p_1)))
>> => (---:that .p_1)]
>> {move 0}
```

There follows homage to Aristotle.
Lestrade execution:
clearcurrent

```
declare p prop
```

```
>> p: prop {move 1}
% Prove p V ~ p
% start by supposing otherwise
open
    declare hyp1 that ~(p V ~ p)
>> hyp1: that ~((p V ~ (p))) {move 2}
            % show ~ p
    open
            declare hyp2 that p
>> hyp2: that p {move 3}
>> (p V ~}(\textrm{p})))
>>
        define line2 hyp2 : Mp (line1 hyp2, \
                        hyp1)
>> line2: [(hyp2_1:that p) => (---:that
>> ??)]
>> {move 2}
        close
```

```
    define line3 hyp1 : Deduction line2
>> line3: [(hyp1_1:that ~((p V ~ (p)))) =>
                (---:that (p -> ??))]
            {move 1}
    define line4 hyp1 : Addition2 (p, line3 \
        hyp1)
        line4: [(hyp1_1:that ~((p V ~(p)))) =>
            (---:that (p V (p -> ??)))]
        {move 1}
    define line5 hyp1 : Mp (line4 hyp1, hyp1)
        line5: [(hyp1_1:that ~ ((p V ~ (p)))) =>
            (---:that ??)]
        {move 1}
    close
define excmidO p : Deduction line5
    excmid0: [(p_1:prop) => (Deduction([(hyp1_2:
            that ~((p_1 V ~ (p_1)))) => (((p_1 Addition2
            Deduction([(hyp2_3:that p_1) => (((~ (p_1)
                        Addition1 hyp2_3) Mp hyp1_2):that
                        ??)]))
                Mp hyp1_2):that ??)])
        :that (~((p_1 V ~(p_1))) -> ??))]
        {move 0}
```

```
define Excmid p : Dneg (excmid0 p)
```

define Excmid p : Dneg (excmid0 p)
>> Excmid: [(p_1:prop) => (Dneg(excmidO(p_1)):
>> Excmid: [(p_1:prop) => (Dneg(excmidO(p_1)):
>> that (p_1 V ~(p_1)))]

```
>> that (p_1 V ~(p_1)))]
```

The attentive reader should be able to tell from the proof above that Lestrade in many places demonstrates that it knows that $P \rightarrow \perp$ and $\neg P$ are the same thing. We do though want to have the ability to put a result that we prove in the form that we expect.

```
Lestrade execution:
clearcurrent
declare p prop
>> p: prop {move 1}
declare pp that p
>> pp: that p {move 1}
define Fixprop p pp : pp
>> Fixprop: [(p_1:prop),(pp_1:that p_1) => (pp_1:
>> that p_1)]
>> {move 0}
declare notso [pp => that ??] \
>> notso: [(pp_1:that p) => (---:that ??)]
>> {move 1}
define Negintro notso : Fixprop (~p,Deduction \
    notso)
```

```
>> Negintro: [(.p_1:prop),(notso_1:[(pp_2:that
>> .p_1) => (---:that ??)])
>> => ((~(.p_1) Fixprop Deduction(notso_1)):
>> that ~(.p_1))]
>> {move 0}
```

The rule Negintro is actually a specialization of Deduction; Fixprop is used to coerce the output into the form $\neg P$ instead of $P \rightarrow \perp$. The idea behind Fixprop is that it reads the form of its output from its first argument, while the actual proof presented to it as its second argument may prove something whose type looks different but matches the first argument. We also used a fancy expression for a function sort to avoid opening a move. The expression [pp => that ??] represents the type of a function with a single input of the type of pp (read from the next move) to an object of type that ??.

Now we begin the treatment of quantification. We present the declarations in two styles, one with use of variable binding terms and one without.

```
Lestrade execution:
clearcurrent
open
    declare x1 obj
>> x1: obj {move 2}
    postulate Pred x1 prop
>> Pred: [(x1_1:obj) => (---:prop)]
>> {move 1}
    close
postulate Forall Pred prop
>> Forall: [(Pred_1:[(x1_2:obj) => (---:prop)])
>> => (---:prop)]
```

```
>> {move 0}
open
    declare x1 obj
>> x1: obj {move 2}
    postulate univev1 x1 that Pred x1
>> univev1: [(x1_1:obj) => (---:that Pred(x1_1))]
>> {move 1}
    close
postulate Ug univev1 that Forall Pred
>> Ug: [(.Pred_1:[(x1_2:obj) => (---:prop)]),
>> (univev1_1:[(x1_3:obj) => (---:that .Pred_1(x1_3))])
>> => (---:that Forall(.Pred_1))]
>> {move 0}
declare univev2 that Forall Pred
>> univev2: that Forall(Pred) {move 1}
declare x obj
>> x: obj {move 1}
postulate Ui univev2 x that Pred x
>> Ui: [(.Pred_1:[(x1_2:obj) => (---:prop)]),
>> (univev2_1:that Forall(.Pred_1)),(x_1:
```

```
>> obj) => (---:that .Pred_1(x_1))]
>> {move 0}
clearcurrent
declare x1 obj
>> x1: obj {move 1}
declare Pred [x1 => prop] \
>> Pred: [(x1_1:obj) => (---:prop)]
>> {move 1}
postulate Forall2 Pred prop
>> Forall2: [(Pred_1:[(x1_2:obj) => (---:prop)])
>> => (---:prop)]
>> {move 0}
declare univev1 [x1 => that Pred x1] \
>> univev1: [(x1_1:obj) => (---:that Pred(x1_1))]
>> {move 1}
postulate Ug2 univev1 : that Forall Pred
>> Ug2: [(.Pred_1:[(x1_2:obj) => (---:prop)]),
>> (univev1_1:[(x1_3:obj) => (---:that .Pred_1(x1_3))])
```

```
>> => (---:that Forall(.Pred_1))]
>> {move 0}
declare univev2 that Forall Pred
>> univev2: that Forall(Pred) {move 1}
declare x obj
>> x: obj {move 1}
postulate Ui2 univev2, x that Pred x
>> Ui2: [(.Pred_1:[(x1_2:obj) => (---:prop)]),
>> (univev2_1:that Forall(.Pred_1)),(x_1:
>> obj) => (---:that .Pred_1(x_1))]
>> {move 0}
```

We now present the postulateive rules for the existential quantifier

```
Lestrade execution:
```

clearcurrent
declare x1 obj
>> x1: obj \{move 1\}
declare Pred [x1 => prop] \}
>> Pred: [(x1_1:obj) => (---:prop)]
>> \{move 1\}

```
postulate Exists Pred prop
>> Exists: [(Pred_1:[(x1_2:obj) => (---:prop)])
>> => (---:prop)]
>> {move 0}
declare x obj
>> x: obj {move 1}
declare existsev1 that Pred x
>> existsev1: that Pred(x) {move 1}
postulate Ei Pred, x, existsev1 that Exists \
    Pred
>> Ei: [(Pred_1:[(x1_2:obj) => (---:prop)]),
>> (x_1:obj),(existsev1_1:that Pred_1(x_1))
>> => (---:that Exists(Pred_1))]
>> {move 0}
define Eia x, existsev1: Ei Pred,x,existsev1
>> Eia: [(x_1:obj),(.Pred_1:[(x1_2:obj) => (---:
>> prop)]),
>> (existsev1_1:that .Pred_1(x_1)) => (Ei(.Pred_1,
>> x_1,existsev1_1):that Exists(.Pred_1))]
>> {move 0}
define Eib Pred, existsev1: Ei Pred,x,existsev1
```

```
>> Eib: [(Pred_1:[(x1_2:obj) => (---:prop)]),
>> (.x_1:obj),(existsev1_1:that Pred_1(.x_1))
>> => (Ei(Pred_1,.x_1,existsev1_1):that Exists(Pred_1))]
>> {move 0}
declare existsev2 that Exists Pred
>> existsev2: that Exists(Pred) {move 1}
declare p prop
>> p: prop {move 1}
declare witnessing [x,existsev1 => that p] \
>> witnessing: [(x_1:obj),(existsev1_1:that
>> Pred(x_1)) => (---:that p)]
>> {move 1}
```

```
postulate Eg existsev2, witnessing: that \
```

postulate Eg existsev2, witnessing: that \
p
p
>> Eg: [(.Pred_1:[(x1_2:obj) => (---:prop)]),
>> Eg: [(.Pred_1:[(x1_2:obj) => (---:prop)]),
>> (existsev2_1:that Exists(.Pred_1)),(.p_1:
>> (existsev2_1:that Exists(.Pred_1)),(.p_1:
>> prop),(witnessing_1:[(x_3:obj),(existsev1_3:
>> prop),(witnessing_1:[(x_3:obj),(existsev1_3:
that .Pred_1(x_3)) => (---:that .p_1)])
that .Pred_1(x_3)) => (---:that .p_1)])
=> (---:that .p_1)]
=> (---:that .p_1)]
{move 0}

```
    {move 0}
```

An interesting aspect of the existential quantifier is the relationship of existential instantiation to the implicit inference functions. In the universal quantifier rules, reasoning in either direction, one can determine the predicate from the
data supplied. But from an expanded statement Pred x one cannot determine Pred with certainty even given x ; sometimes one has to supply it because some instances of x are accidental occurrences as a constant. Supplying a version with all arguments explicit, then defining versions with different choices of explicit arguments is a good template for what happens with other operations where we can deduce different arguments under different circumstances.

```
Lestrade execution:
clearcurrent
declare x obj
>> x: obj {move 1}
declare y obj
>> y: obj {move 1}
postulate = x y prop
>> =: [(x_1:obj),(y_1:obj) => (---:prop)]
>> {move 0}
postulate Reflexive x that x=x
>> Reflexive: [(x_1:obj) => (---:that (x_1 =
>> x_1))]
>> {move 0}
define test1 x : Eia x Reflexive x
>> test1: [(x_1:obj) => ((x_1 Eia Reflexive(x_1)):
>> that Exists([(x1_3:obj) => ((x1_3 = x1_3):
>> prop)]))
>> ]
>> {move 0}
```

```
define test2 x: Eib [y => x=y] \
    Reflexive x
>> test2: [(x_1:obj) => (Eib([(y_2:obj) => ((x_1
>> = y_2):prop)]
>> ,Reflexive(x_1)):that Exists([(y_3:obj)
>> => ((x_1 = y_3):prop)]))
>> ]
>> {move 0}
```

open
declare y1 obj
>> y1: obj \{move 2\}
define testpred y 1 : $\mathrm{x}=\mathrm{y} 1$
>> testpred: [(y1_1:obj) => (---:prop)]
>> \{move 1\}
close
define test3 x : Eib testpred, Reflexive \}
x
>> test3: $\left[\left(x_{-} 1: o b j\right)\right.$) (Eib([(y1_2:obj) \Rightarrow
>> ((x_1 = y1_2):prop)]
>> , Reflexive(x_1)):that Exists([(y1_3:obj)
>> \quad > ($\left.\left.\left.\left(x _1=y 1 _3\right): p r o p\right)\right]\right)$)
>>]
>> \{move 0\}
define test4 : Ug test3

```
>> test4: [(Ug(test3):that Forall([(x_3:obj)
>> => (Exists([(y1_4:obj) => ((x_3 = y1_4):
>> prop)])
>> :prop)]))
>> ]
>> {move 0}
```

In the example above we prove two different existential statements from the same evidence, in one case supplying the witness and letting Lestrade guess the predicate, and in the other case supplying a different predicate.

The proof of test3 illustrates a style in which the use of a λ-term as an argument is avoided.

The proof test 4 illustrates the addition of a universal quantifier just because we can.

We introduced some basic declarations for equality just for the sake of the example; more declarations follow.

```
Lestrade execution:
% basic additional declarations for equality
clearcurrent
declare x obj
>> x: obj {move 1}
declare y obj
>> y: obj {move 1}
declare pred [x=>prop] \
>> pred: [(x_1:obj) => (---:prop)]
>> {move 1}
```

```
declare eqev that x=y
    eqev: that (x = y) {move 1}
declare predev that pred x
>> predev: that pred(x) {move 1}
postulate Substitution1 pred, eqev predev \
    that pred y
    Substitution1: [(pred_1:[(x_2:obj) => (---:
>> prop)]),
>> (.x_1:obj),(.y_1:obj),(eqev_1:that (.x_1
>> = .y_1)),(predev_1:that pred_1(.x_1))
>> => (---:that pred_1(.y_1))]
>> {move 0}
```

```
postulate Substitution2 eqev predev that \
```

postulate Substitution2 eqev predev that \
pred y
pred y
>> Substitution2: [(.x_1:obj),(.y_1:obj),(eqev_1:
>> Substitution2: [(.x_1:obj),(.y_1:obj),(eqev_1:
>> that (.x_1 = .y_1)),(.pred_1:[(x_2:obj)
>> that (.x_1 = .y_1)),(.pred_1:[(x_2:obj)
>> => (---:prop)]),
>> => (---:prop)]),
>> (predev_1:that .pred_1(.x_1)) => (---:
>> (predev_1:that .pred_1(.x_1)) => (---:
>> that .pred_1(.y_1))]
>> that .pred_1(.y_1))]
>> {move 0}

```
>> {move 0}
```

In addition to reflexivity already given, we need subsitution of equals for equals. Other properties of equality are derived.

```
Lestrade execution:
clearcurrent
```

```
declare x obj
>> x: obj {move 1}
declare y obj
>> y: obj {move 1}
declare eqev that x=y
>> eqev: that (x = y) {move 1}
define Symmeq eqev: Substitution1 [y=>y=x] \
    eqev Reflexive x
>> Symmeq: [(.x_1:obj),(.y_1:obj),(eqev_1:that
>> (.x_1 = .y_1)) => (Substitution1([(y_2:
>> obj) => ((y_2 = .x_1):prop)]
>> ,eqev_1,Reflexive(.x_1)):that (.y_1 =
>> .x_1))]
>> {move 0}
```

The use of variable binding terms makes this proof of symmetry of equality very compact, and perhaps a bit mysterious.

3 Type Theory and the Curry Howard Isomorphism

4 Set Theory

In this section we discuss the implementation of the usual untyped foundations of mathematics using the theory of sets. The Lestrade implementation is not strictly speaking untyped, since while all the sets are of sort obj, the machinery of proof involves complex evidence types as usual.

4.1 Russell's Paradox

We begin by implementing set theory carelessly, and coming up against the paradox of Russell.

```
Lestrade execution:
clearcurrent
open
    declare x obj
>> x: obj {move 2}
    declare pred [x=>prop] \
>> pred: [(x_1:obj) => (---:prop)]
>> {move 2}
    postulate setof pred obj
>> setof: [(pred_1:[(x_2:obj) => (---:prop)])
>> => (---:obj)]
>> {move 1}
```

We declare the set constructor which takes any predicate of objects to the associated set of objects (itself supposed to be an object).

```
Lestrade execution:
```

```
    declare y obj
>> y: obj {move 2}
    postulate E x y prop
>> E: [(x_1:obj),(y_1:obj) => (---:prop)]
>>
    {move 1}
```

We declare the membership relation on objects.
Lestrade execution:
declare inev1 that x E setof pred
>> inev1: that (x E setof(pred)) \{move 2\}
postulate Comp1 inev1 that pred x
>> Comp1: [(.x_1:obj),(.pred_1:[(x_2:obj)
>> $\quad>$ (---:prop)]),
>> (inev1_1:that (.x_1 E setof(.pred_1)))
>> \quad > (---:that .pred_1(.x_1))]
>> \{move 1\}

We declare one side of the comprehension scheme: from evidence for $\phi(a)$, get evidence for $a \in\{x \mid \phi(x)\}$.

Lestrade execution:
declare inev2 that pred x
>> inev2: that $\operatorname{pred}(\mathrm{x})$ \{move 2\}

```
    postulate Comp2 x inev2 that x E setof \
        pred
    Comp2: [(x_1:obj),(.pred_1:[(x_2:obj)
                        => (---:prop)]),
            (inev2_1:that .pred_1(x_1)) => (---:
            that (x_1 E setof(.pred_1)))]
            {move 1}
```

We declare the other side of the comprehension scheme: from evidence for $a \in\{x \mid \phi(x)\}$ get evidence for $\phi(a)$.

Lestrade execution:
define Russell : setof [x=> ~(x E x)] \}
>> Russell: [(---:obj)]
>> \{move 1\}

We define the Russell class, and begin the proof forthwith.

```
Lestrade execution:
    open
        declare rhyp that Russell E Russell
        rhyp: that (Russell E Russell) {move
>> 3}
```

Let R be the Russell class. Our aim is to prove $R \notin R$. Our strategy is to assume $R \in R$ (rhyp) and reason to a contradiction.

Lestrade execution:

```
define line1 rhyp : Comp1 rhyp
    line1: [(rhyp_1:that (Russell E Russell))
        => (---:that ~((Russell E Russell)))]
        {move 2}
```

By an application of Comp1 we reason from $R \in R=\{x \mid x \notin x\}$ to $R \notin R$.

```
Lestrade execution:
```

```
        define line2 rhyp : Mp rhyp line1 rhyp
>> line2: [(rhyp_1:that (Russell E Russell))
>> => (---:that ??)]
>> {move 2}
```

By modus ponens we obtain an absurdity (recalling that negation is defined in terms of implication).

```
Lestrade execution:
        close
    define rfact : Negintro line2
        rfact: [(---:that ~((Russell E Russell)))]
>> {move 1}
```

By the rule of negation introduction developed above (a variant of the deduction theorem) we get a proof of $R \notin R$ from the function line2 defined in the justclosed block.

Lestrade execution:
define rfact2 : Fixprop(Russell E Russell, \}

```
    Comp2 Russell rfact)
>> rfact2: [(---:that (Russell E Russell))]
>> {move 1}
```

From $R \notin R$ we get by the comprehension axiom Comp2 evidence for $R \in$ $\{x \mid x \notin x\}=R$. The use of Fixprop is cosmetic, so that the result displayed is $R \in R$ rather than $R \in\{x \mid x \notin x\}$.

Lestrade execution:
close
define Rparadox Comp1, Comp2 : Mp rfact2 \}
rfact
Rparadox: [(.E_1:[(x_2:obj),(y_2:obj) => (---:prop)]),
>>
(.setof_1:[(pred_3:[(x_4:obj) \Rightarrow (---: prop)]) => (---:obj)]),
(Comp1_1:[(.x_5:obj), (.pred_5:[(x_6:obj)
=> (---:prop)]),
(inev1_5:that (.x_5 .E_1 .setof_1(.pred_5))) => (---:that .pred_5(.x_5))]),
(Comp2_1:[(x_7:obj), (.pred_7:[(x_8:obj) => (---:prop)]), (inev2_7:that .pred_7(x_7)) => (---: that (x_7 .E_1 .setof_1(.pred_7)))])
$\Rightarrow\left(\left(\left(\left(. s e t o f _1\left(\left[\left(x _11: o b j\right)\right)=>\left(\sim\left(\left(x _11\right.\right.\right.\right.\right.\right.\right.\right.$.E_1 x_11)):prop)])
.E_1 .setof_1 $\left(\left[\left(x _12: o b j\right)=>\left(\sim\left(\left(x _12\right.\right.\right.\right.\right.$.E_1 x_12)):prop)]))
Fixprop Comp2_1(.setof_1([(x_13:obj) => (~ ((x_13 .E_1 x_13)):prop)]),
$\left[\left(x _14: o b j\right)=>\left(\sim\left(\left(x _14\right.\right.\right.\right.$.E_1 $\left.\left.\left.\left.x_{-} 14\right)\right): p r o p\right)\right]$
, Negintro([(rhyp_17:that (.setof_1([(x_18: obj) $\Rightarrow>\left(\sim\left(\left(x_{-} 18\right.\right.\right.$.E_1 $\left.\left.x _18\right)\right):$ prop $\left.\left.)\right]\right)$
.E_1 .setof_1 $\left(\left[\left(x_{-} 19: o b j\right)=>\left(\sim\left(x_{_} 19\right.\right.\right.\right.$.E_1 x_19)): prop)]))) => ((rhyp_17 Mp Comp1_1(.setof_1([(x_22: obj) => (~ ((x_22 .E_1 x_22)):prop)]), $\gg \quad\left[\left(x_{-} 23: o b j\right)=>\left(\sim\left(\left(x_{-} 23 . E_{-} 1 x_{-} 23\right)\right)\right.\right.$:

```
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
```

```
            prop)]
```

 prop)]
 ,rhyp_17)):that ??)]))
 ,rhyp_17)):that ??)]))
) Mp Negintro([(rhyp_26:that (.setof_1([(x_27:
) Mp Negintro([(rhyp_26:that (.setof_1([(x_27:
 obj) \(=>\) (~ ((x_27 .E_1 x_27)):prop)])
 obj) \(=>\) (~ ((x_27 .E_1 x_27)):prop)])
 .E_1 .setof_1 ([(x_28:obj) \(=>\left(\sim\left(\left(x _28\right.\right.\right.\)
 .E_1 .setof_1 ([(x_28:obj) \(=>\left(\sim\left(\left(x _28\right.\right.\right.\)
 .E_1 x_28)): prop)]))
 .E_1 x_28)): prop)]))
) => ((rhyp_26 Mp Comp1_1 (.setof_1 ([(x_31:
) => ((rhyp_26 Mp Comp1_1 (.setof_1 ([(x_31:
 obj) \(=>\) (~ ((x_31 .E_1 x_31)):prop)]),
 obj) \(=>\) (~ ((x_31 .E_1 x_31)):prop)]),
 \(\left[\left(x _32: o b j\right)=>\left(\sim\left(\left(x _32\right.\right.\right.\right.\).E_1 x_32)):
 \(\left[\left(x _32: o b j\right)=>\left(\sim\left(\left(x _32\right.\right.\right.\right.\).E_1 x_32)):
 prop)]
 prop)]
 ,rhyp_26)): that ??)]))
 ,rhyp_26)): that ??)]))
 :that ??)]
 :that ??)]
 \{move 0\}

```
\{move 0\}
```

We conducted all our previous reasoning in a block (perhaps we were suspicious), so on emerging from this block we are able to present a function taking any axioms Comp1 and Comp2 (from which E and setof can be determined implicitly) declared as in the block to a proof of the absurd. The display for Rparadox is longer than displays above because definitions local to the block are expanded.

We have two observations about this argument. One point is that there is no threat here to the foundations of reason. Our formalization makes it clear that there is a mistake, which is in essence the casual assumption that every function from obj to prop can be identified with an object. We are firm in Lestrade about separating objects from functions, and no such identification can be smuggled in without an explicit postulate, which we show here cannot be safely assumed. At the roots of the paradox lies a confusion not just between different sorts of entity, but between different species of entity, from the Lestrade standpoint.

Our second observation is that not all features of a working set theory are implemented: in this initial development we give only those declarations needed to show the contradiction. There will be more ingredients (such as extensionality principles) in the set theory we implement below.

4.2 Zermelo set theory

In this section we are more confident that we will not get into trouble, so we boldly make our declarations outside a sheltering block. We will roughly speaking follow the original presentation of Zermelo's axioms.

Lestrade execution:
clearcurrent

```
declare x obj
>> x: obj {move 1}
declare y obj
>> y: obj {move 1}
postulate E x y prop
>> E: [(x_1:obj),(y_1:obj) => (---:prop)]
>> {move 0}
declare u obj
>> u: obj {move 1}
declare uinx that u E x
>> uinx: that (u E x) {move 1}
We declare the membership relation.
```


Lestrade execution:

```
open
declare z obj
>> \(\quad\) : obj \{move 2\}
declare zinx that \(z \mathrm{E} x\)
```

```
>> zinx: that (z E x) {move 2}
    declare ziny that z E y
>> ziny: that (z E y) {move 2}
    postulate ext1 zinx that z E y
>> ext1: [(.z_1:obj),(zinx_1:that (.z_1 E
>> x)) => (---:that (.z_1 E y))]
>> {move 1}
    postulate ext2 ziny that z E x
>> ext2: [(.z_1:obj),(ziny_1:that (.z_1 E
>> y)) => (---:that (.z_1 E x))]
>> {move 1}
    close
postulate Extensionality uinx ext1, ext2 \
    that x=y
    Extensionality: [(.u_1:obj),(.x_1:obj),(uinx_1:
>> that (.u_1 E .x_1)),(.y_1:obj),(ext1_1:
>> [(.z_2:obj),(zinx_2:that (.z_2 E .x_1))
>> => (---:that (.z_2 E .y_1))]),
>> (ext2_1:[(.z_3:obj),(ziny_3:that (.z_3
>> E .y_1)) => (---:that (.z_3 E .x_1))])
>> => (---:that (.x_1 = .y_1))]
>> {move 0}
```

These are declarations for weak extensionality: objects with elements that have the same elements are equal.

Lestrade execution:

```
postulate Empty obj
>> Empty: obj {move 0}
postulate Emptyisempty x : that ~(x E Empty)
>> Emptyisempty: [(x_1:obj) => (---:that ~ ((x_1
>> E Empty)))]
>> {move 0}
define Isset x : (x = Empty) V (Exists [u \
    => u E x]) \
>> Isset: [(x_1:obj) => (((x_1 = Empty) V Exists([(u_2:
>> obj) => ((u_2 E x_1):prop)]))
>> :prop)]
>> {move 0}
```

We declare the empty set (the first object introduced in Zermelo's axiom of elementary sets) and define the notion of set: an object is a set if it is the empty set or has an element.

Below we prove the theorem that two sets with the same elements are equal (the weak extensionality theorem).

The typesonly command suppresses the display of the bodies of definitions: as we will see at the end, the terms representing components of this proof get quite large. The string . . signals omitted definition bodies. This directive is reversed by showdefs.

Lestrade execution:
typesonly
open

```
    declare x1 obj
>> x1: obj {move 2}
    open
        declare y1 obj
        y1: obj {move 3}
```

Choose arbitrary x and y for universal generalization.

Lestrade execution:

open

declare u1 obj

>> u1: obj \{move 4\}
>> extev: that (Isset (x1) \& (Isset (y1)
>> \& Forall $\left(\left[\left(u 1 _1: o b j\right)=>\left(\left(\left(u 1 _1\right.\right.\right.\right.\right.$
$>\quad E \mathrm{x} 1)<->\left(u 1 _1 \mathrm{E}\right.$ y1)) :prop)]))
>>) \{move 4\}

Assume that x and y are sets and have the same elements.

Lestrade execution:

$$
\begin{aligned}
& \text { define line1 extev : Simplification1 \} } \\
{\text { extev }}
\end{aligned}
$$

```
>> line1: [(extev_1:that (Isset(x1)
>>
>>
>>
>>
>>
*
>>
>>
>>
>>
>>
define line2 extev : Simplification1 \
    (Simplification2 extev)
    line2: [(extev_1:that (Isset(x1)
            & (Isset(y1) & Forall([(u1_2:
                obj) => (((u1_2 E x1) <->
                (u1_2 E y1)):prop)]))
            )) => (---:that Isset(y1))]
            {move 3}
define extstat extev : Simplification2(Simplification2 \
    extev)
    extstat: [(extev_1:that (Isset(x1)
            & (Isset(y1) & Forall([(u1_2:
                obj) => (((u1_2 E x1) <->
                (u1_2 E y1)):prop)]))
            )) => (---:that Forall([(u1_5:
                obj) => (((u1_5 E x1) <->
                (u1_5 E y1)):prop)]))
            ]
        {move 3}
```

Extract important pieces of the assumption. line1 is the assumption that x is a set, line2 is the assumption that y is a set and extstat is the assumption that the two sets have the same elements. These will appear with extev as an argument.

The strategy of the proof that follows is a proof by cases.
Lestrade execution:

$$
\% \text { our goal is to prove } \mathrm{x} 1=\mathrm{y} 1 \text { by cases }
$$

```
open
    declare line3 that x1 = Empty
```

```
>>
>>
line3: that (x1 = Empty) {move
% prove x=y
Case I: assume that \(x\) is the empty set. This falls apart into two cases depending on the nature of \(y\);
Lestrade execution:
\% now prove by cases in Isset y1
open
declare line5 that y1 = Empty
>> line5: that (y1 = Empty) \{move
>> 6\}
```

Case IA: y is empty.
Lestrade execution:

```
            define line9 line5 : Symmeq \
            line5
            line9: [(line5_1:that (y1
                = Empty)) => (---:that
                    (Empty = y1))]
                    {move 5}
```

 define line10 line5 : Substitution2 \}
 (line9 line5,line3)
 line10: [(line5_1:that (y1
 = Empty)) => (---:that
 \((x 1=y 1))]\)
 \{move 5\}
 close
define line11 line3 : Deduction \}
line10
>> line11: [(line3_1:that (x1 =
>>
>>
npty)) => (---:that ((y1
= Empty) $->(x 1=y 1)))]$
\{move 4\}

The implication expressing the conclusion of Case IA is readily proved using the substitution property of equality.

Lestrade execution:
open
declare u2 obj
>> u2: obj \{move 6\}
declare line7 that Exists[u2 \} =>u2 E y1] \}
>> line7: that Exists([(u2_1:
$\gg \quad$ obj $) \Rightarrow\left(\left(u 2 _1\right.\right.$ E y1):prop)])
>>
\{move 6\}

This is case IB, where y is inhabited. Actually, the way I prove this is absurd, though it works. I never use the fact that x is empty, which would allow a quick proof by contradiction (I shoudl repair this). On the other hand, this proof makes the point that the weak extensionality theorem actually does not depend on the fact that Empty has no elements.

The following block sets things up for a proof by existential generalization.

Lestrade execution:

```
    open
    declare w obj
>>
    w: obj {move 7}
    declare wev that w E y1
        wev: that (w E y1) {move
        7}
```

Provide a witness to the existential statement that y is inhabited.

Lestrade execution:

```
define xxx wev:Ui (extstat \
    extev,w)
    xxx: [(.w_1:obj),(wev_1:
        that (.w_1 E y1)) =>
        (---:that ((.w_1 E x1)
                <-> (.w_1 E y1)))]
            {move 6}
```

 define xxx2 wev :Simplification2 \}
 xxx wev
 xxx2: [(.w_1:obj), (wev_1:
 that (.w_1 E y1)) =>
 (---:that ((.w_1 E y1)
 -> (.w_1 E x1)))]
 \{move 6\}
 define xxx3 wev: Mp wev \}
 xxx2 wev
 xxx3: [(.w_1:obj), (wev_1:
 that (.w_1 E y1)) =>
 (---:that (.w_1 E x1))]
 Argue that x is inhabited (which of course we also know is false, but we never use this in the current proof plan!)

We follow with the obvious structured proof that x and y are equal by extensionality, since x is inhabited and x and y have the same elements.

Lestrade execution:

open

```
    declare w1 obj
        w1: obj {move 8}
```

 declare wev1 that w1 \}
 E x1
 wev1: that (w1 E x1)
 \{move 8\}
 define line89 wev1 : \}
 Ui (extstat extev,w1)
 line89: [(.w1_1:obj),
 (wev1_1:that (.w1_1
 E x1)) => (---: that
 ((.w1_1 E x1) <->
 (.w1_1 E y1)))]
 \{move 7\}
 define line90 wev1 : \}
 Simplification1 line89 \}
 wev1
 line90: [(.w1_1:obj),
 (wev1_1:that (.w1_1
 E x1)) \(\Rightarrow\) (---:that
 ((.w1_1 E x1) ->
 (.w1_1 E y1)))]

define line91 wev1 : \}

 Mp wev1 line90 wev1line91: [(.w1_1:obj),
(wev1_1:that (.w1_1
E x1)) => (---:that
(.w1_1 E y1))]
\{move 7\}

```
declare wev2 that w1 \
    E y1
    wev2: that (w1 E y1)
        {move 8}
```

define lineb89 wev2 \}
: Ui (extstat extev, \}
w1)
lineb89: [(.w1_1:obj),
(wev2_1:that (.w1_1
E y1)) => (---:that
((.w1_1 E x1) <->
(.w1_1 E y1)))]
\{move 7\}
define line92 wev2 : \}
Simplification2 lineb89 \}
wev2
line92: [(.w1_1:obj),
(wev2_1:that (.w1_1
E y1)) => (---:that
((.w1_1 E y1) ->
(.w1_1 E x1)))]
\{move 7\}

```
    define line93 wev2 : \
    Mp wev2 line92 wev2
>> line93: [(.w1_1:obj),
>>
>>
>>
>>
    close
define line94 wev: Extensionality \
    (xxx3 wev, line91, line93)
    line94: [(.w_1:obj),(wev_1:
        that (.w_1 E y1)) =>
        (---:that (x1 = y1))]
    {move 6}
```

What appears above is the natural structured argument that because of the hypothesis that x and y have the same elements, we can produce the functions from w and evidence that $w \in x$ to evidence that $w \in y$ and from w and evidence that $w \in y$ to evidence that $w \in x$ which are needed as input to the extensionality axiom. The information that x is inhabited is also needed, and supplied. Again, this whole case could be proved much more compactly!

Lestrade execution:
close
define line95 line7 : Eg line7 \} line94
line95: [(line7_1:that Exists([(u2_2: obj) \Rightarrow ((u2_2 E y1) : prop)]))
\Rightarrow (---:that (x1 = y1))]
\{move 5\}
close

```
define line96 line3: Deduction \
    line95
    line96: [(line3_1:that (x1 =
        Empty)) => (---:that (Exists([(u2_12:
                obj) => ((u2_12 E y1):prop)])
        -> (x1 = y1)))]
        {move 4}
```

We formally complete Case IB.

Lestrade execution:

	```extev ,line11 line3, line96 \ line3)```
>>	line97: [(line3_1:that (x1 =
>>	Empty) ) => (---:that (x1 =
>>	y1))]
>>	\{move 4\}
	close
	```define line98 extev : Deduction \ line97```
>>	line98: [(extev_1:that (Isset(x1)
>	\& (Isset (y1) \& Forall ([(u1_2:
>>	obj) => (((u1_2 E x1) <->
>>	(u1_2 E y1)):prop)]))
>>	$))$ => (---:that ((x1 = Empty)
>>	-> (x1 = y1)))]
>>	\{move 3\}

We formally complete the proof of Case I.

Lestrade execution:
open
declare u2 obj

```
declare line99 that Exists[u2=>u2 \
                    E x1] \
>> line99: that Exists([(u2_1:obj)
>> => ((u2_1 E x1):prop)])
    {move 5}
```

>>

This is Case II, x is inhabited, which we prove directly without further case analysis.

Lestrade execution:

open

declare w obj
>> \quad w: obj \{move 6\}
declare wev that w E x1
\gg wev: that (w E x1) \{move 6$\}$

We introduce a witness to the hypothesis for Case II, setting up for a proof of the goal by existential generalization.

Lestrade execution:

open

declare w1 obj

>>

$$
\text { w1: obj \{move 7\} }
$$

```
declare wev1 that w1 E \
    x1
    wev1: that (w1 E x1) {move
        7}
declare wev2 that w1 E \
    y1
    wev2: that (w1 E y1) {move
```

 7\}
    ```
define zonk w1 : Ui (extstat \
    extev,w1)
    zonk: [(w1_1:obj) => (---:
                that ((w1_1 E x1) <->
                (w1_1 E y1)))]
        {move 6}
```

define zonk1 w1: Simplification1 \}
(zonk w1)
zonk1: [(w1_1:obj) => (---:
that ((w1_1 E x1) ->
(w1_1 E y1)))]
\{move 6\}
define zonk2 w1:Simplification2 \}
(zonk w1)
zonk2: [(w1_1:obj) => (---:
that ((w1_1 E y1) ->
(w1_1 E x1)))]
\{move 6\}
define zonk3 wev1 : Mp \}
wev1 zonk1 w1

```
>> zonk3: [(.w1_1:obj),(wev1_1:
>>
>>
>>
define zonk4 wev2 : Mp \
    wev2 zonk2 w1
    zonk4: [(.w1_1:obj),(wev2_1:
>>
>>
>>
>>
                        that (.w1_1 E y1)) =>
                    (---:that (.w1_1 E x1))]
            {move 6}
    close
define zonk5 wev: Extensionality \
    wev zonk3, zonk4
    zonk5: [(.w_1:obj),(wev_1:
            that (.w_1 E x1)) => (---:
            that (x1 = y1))]
        {move 5}
```

The hypothesis that x and y have the same elements suffice to postulate the functions from w and evidence that $w \in x$ to evidence that $w \in y$ and from w and evidence that $w \in y$ to evidence that $w \in x$ which are needed as input to the extensionality axiom: the further input that x is inhabited is provided as the hypothesis of Case II.

```
Lestrade execution:
```

close
define zonk6 line99 : Eg line99 \}
zonk5
zonk6: [(line99_1:that Exists([(u2_2:
obj) \Rightarrow ((u2_2 E x1) :prop)]))
\Rightarrow (---:that $(x 1=y 1))]$
\{move 4\}
close

```
define zonk7 extev : Deduction zonk6
```

| >> | zonk7: [(extev_1:that (Isset (x1) |
| :---: | :---: |
| >> | \& (Isset (y1) \& Forall ([(u1_2: |
| >> | obj) => (((u1_2 E x1) <-> |
| >> | (u1_2 E y1)):prop)])) |
| >> |)) => (---:that (Exists ([(u2_12: |
| >> | obj) => ((u2_12 E x1) :prop)]) |
| >> | -> (x1 = y1)))] |
| >> | \{move 3\} |

We formally complete the proof of the implication expressing Case II, first applying existential generalization then deduction.

Lestrade execution:

```
        define zonk8 extev: Cases(line1 \
            extev, line98 extev, zonk7 extev)
            zonk8: [(extev_1:that (Isset(x1)
            & (Isset(y1) & Forall([(u1_2:
                    obj) => (((u1_2 E x1) <->
                    (u1_2 E y1)):prop)]))
                    )) => (---:that (x1 = y1))]
            {move 3}
            close
        define zonk9 y1: Deduction zonk8
    zonk9: [(y1_1:obj) => (---:that ((Isset(x1)
            & (Isset(y1_1) & Forall([(u1_42:
                obj) => (((u1_42 E x1) <-> (u1_42
                E y1_1)):prop)]))
            ) -> (x1 = y1_1)))]
        {move 2}
```

 close
 define zonk10 x1: Ug zonk9
    ```
zonk10: [(x1_1:obj) => (---:that Forall([(y1_46:
            obj) => (((Isset(x1_1) & (Isset(y1_46)
            & Forall([(u1_47:obj) => (((u1_47
                E x1_1) <-> (u1_47 E y1_46)):
                prop)]))
            ) -> (x1_1 = y1_46)):prop)]))
        ]
    {move 1}
    close
showdefs
define Weakext : Ug zonk10
    Weakext: [(Ug([(x1_1:obj) => (Ug([(y1_6:obj)
            => (Deduction([(extev_8:that (Isset(x1_1)
            & (Isset(y1_6) & Forall([(u1_9:
        obj) => (((u1_9 E x1_1) <->
        (u1_9 E y1_6)):prop)]))
            )) => (Cases(Simplification1(extev_8),
            Deduction([(line3_12:that (x1_1
                = Empty)) => (Cases(Simplification1(Simplification2(extev_8)),
                Deduction([(line5_16:that
                    (y1_6 = Empty)) => ((Symmeq(line5_16)
                    Substitution2 line3_12):
                    that (x1_1 = y1_6))]),
        Deduction([(line7_19:that
            Exists([(u2_20:obj) =>
                    ((u2_20 E y1_6):prop)]))
            => ((line7_19 Eg [(.w_22:
                            obj),(wev_22:that (.w_22
                            E y1_6)) => (Extensionality((wev_22
                            Mp Simplification2((Simplification2(Simplification2(extev_8))
                            Ui .w_22))),[(.w1_26:
                    obj),(wev1_26:that
                    (.w1_26 E x1_1))
                            => ((wev1_26 Mp Simplification1((Simplification2(Simplification2(exte
                    Ui .w1_26))): that
                    (.w1_26 E y1_6))]
                    ,[(.w1_30:obj),(wev2_30:
                            that (.w1_30 E y1_6))
                            => ((wev2_30 Mp Simplification2((Simplification2(Simplification2(exte
                            Ui .w1_30))):that
                            (.w1_30 E x1_1))])
                            :that (x1_1 = y1_6))])
            :that (x1_1 = y1_6))]))
```

```
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
```



```
                    :that (x1_1 = y1_6))]),
                Deduction([(line99_35:that Exists([(u2_36:
                        obj) => ((u2_36 E x1_1):
                        prop)]))
                            => ((line99_35 Eg [(.w_38:
                                obj),(wev_38:that (.w_38
                                E x1_1)) => (Extensionality(wev_38,
                                [(.w1_39:obj),(wev1_39:
                                    that (.w1_39 E x1_1))
                                    => ((wev1_39 Mp Simplification1((Simplification2(Simplification2(extev_8
                                    Ui .w1_39))):that (.w1_39
                                    E y1_6))]
                                    ,[(.w1_43:obj),(wev2_43:
                                    that (.w1_43 E y1_6))
                                    => ((wev2_43 Mp Simplification2((Simplification2(Simplification2(extev_8
                                    Ui .w1_43))):that (.w1_43
                                    E x1_1))])
                                    :that (x1_1 = y1_6))])
                                    :that (x1_1 = y1_6))]))
            :that (x1_1 = y1_6))])
                :that ((Isset(x1_1) & (Isset(y1_6)
            & Forall([(u1_47:obj) => (((u1_47
                    E x1_1) <-> (u1_47 E y1_6)):prop)]))
                ) -> (x1_1 = y1_6)))])
            :that Forall([(y1_2:obj) => (((Isset(x1_1)
            & (Isset(y1_2) & Forall([(u1_3:obj)
                    => (((u1_3 E x1_1) <-> (u1_3
                    E y1_2)):(prop)]))
            ) -> (x1_1 = y1_2)):prop)]))
        ])
        :that Forall([(x1_48:obj) => (Forall([(y1_49:
            obj) => (((Isset(x1_48) & (Isset(y1_49)
            & Forall([(u1_50:obj) => (((u1_50
                    E x1_48) <-> (u1_50 E y1_49)):
                    prop)]))
                ) -> (x1_48 = y1_49)):prop)])
            :prop)]))
        ]
{move 0}
```

The proof of the main result is completed by cases, then by deduction, then by universal generalizations. The reason why we issued the typesonly directive before the proof should be evident (we maliciously invoked the showdefs directive which reverses typesonly before displaying this proof).

The proof is actually quite straightforward and is approached in a natural structured way. The Lestrade output is colossal due to definition expansion; we want to consider whether structuring it differently might reduce the apparent
size. This might also be a strong suggestion that there should be a display setting which modifies the display of defined objects to show only their sorts (which are what actually interest us here). It is worth noting that this proof is unlikely to appear in a final version of this paper!

We now proceed to complete Zermelo's axiom of elementary sets (not without further excursions).

Lestrade execution:
clearcurrent
declare x obj
>> $\mathrm{x}: ~ o b j$ \{move 1\}
declare y obj
>> y: obj \{move 1\}
declare z obj
>> z: obj \{move 1\}

```
postulate pair x y obj
>> pair: [(x_1:obj),(y_1:obj) => (---:obj)]
>> {move 0}
postulate pair1 x y that x E pair x y
>> pair1: [(x_1:obj),(y_1:obj) => (---:that
>> (x_1 E (x_1 pair y_1)))]
>> {move 0}
```

postulate pair2 x y that y E pair x y

```
>> pair2: [(x_1:obj),(y_1:obj) => (---:that
>> (y_1 E (x_1 pair y_1)))]
>> {move 0}
declare zev that z E pair x y
>> zev: that (z E (x pair y)) {move 1}
postulate pair3 zev that (z = x) V z = y
>> pair3: [(.z_1:obj),(.x_1:obj),(.y_1:obj),
>> (zev_1:that (.z_1 E (.x_1 pair .y_1)))
>> => (---:that ((.z_1 = .x_1) V (.z_1 =
>> .y_1)))]
>> {move 0}
```

These are the basic axioms for the unordered pair.

```
Lestrade execution:
```

define singleton x : pair x x
>> singleton: [(x_1:obj) => ((x_1 pair $\left.x _1\right)$:
>> obj)]
>> \{move 0\}
postulate the x obj
>> the: [(x_1:obj) => (---:obj)]
>> \{move 0\}

```
postulate the1 x that the(singleton x) = \
    x
```

```
>> the1: [(x_1:obj) => (---:that (the(singleton(x_1))
>> = x_1))]
>> {move 0}
```

```
postulate the2 x that ~(Exists[y=>x = singleton \
```

postulate the2 x that ~(Exists[y=>x = singleton \
y]) \
y]) \
-> (the x) = Empty
-> (the x) = Empty
>> the2: [(x_1:obj) => (---:that (~ (Exists([(y_2:
>> the2: [(x_1:obj) => (---:that (~ (Exists([(y_2:
>> obj) => ((x_1 = singleton(y_2)):prop)]))
>> obj) => ((x_1 = singleton(y_2)):prop)]))
>> -> (the(x_1) = Empty)))]
>> -> (the(x_1) = Empty)))]
>> {move 0}
>> {move 0}
define Pair x y: singleton x pair x pair \
y
>> Pair: [(x_1:obj),(y_1:obj) => ((singleton(x_1)
>> pair (x_1 pair y_1)):obj)]
>> {move 0}

```

We introduce related notions.
We define the singleton set, which is, oddly to modern eyes, introduced in an independent clause in Zermelo's original axiom.

We introduce the definite description operator (in a form bounded to sets); this can appear appropriately here as it is a left inverse of the singleton operator. it would be definable (using primitives introduced later) if we did not allow atoms.

We introduce the Kuratowski pair, an anachronism, because not known to Zermelo, but very useful.

We prove that the Kuratowski ordered pair is indeed an ordered pair.
```

Lestrade execution:

```
clearcurrent
declare x obj
>> x: obj \{move 1\}
```

declare y obj
>> y: obj {move 1}
declare z obj
>> z: obj {move 1}
declare w obj
>> w: obj {move 1}
typesonly
open
declare pairsequal that (x Pair y) = (z \
Pair w)
>> pairsequal: that ((x Pair y) = (z Pair
>> w)) {move 2}

```

We prove a frequently useful lemma.
Lestrade execution:
    declare p prop
>> p: prop \{move 2\}
    declare porp that p V p
```

 declare pp that p
 >> pp: that p {move 2}
define Porp porp : Cases (porp,Deduction \
[pp=>pp] \
, Deduction [pp=>pp]) \
Porp: [(.p_1:prop),(porp_1:that (.p_1
V .p_1)) => (---:that .p_1)]
{move 1}

```

We introduce the assumption that \((x, y)=(z, w)\).
Lestrade execution:
```

 define line1 pairsequal : Substitution2 \
 pairsequal, pair1 (singleton x,x pair \
 y)
 line1: [(pairsequal_1:that ((x Pair y)
 = (z Pair w))) => (---:that (singleton(x)
 E (z Pair w)))]
 {move 1}
    ```
    define line2 pairsequal: pair3 line1 pairsequal
    line2: [(pairsequal_1:that ((x Pair y)
>>
    \(=(z\) Pair w) ) ) \(\Rightarrow\) (---:that ((singleton \((x)\)
    \(=\) singleton(z)) V (singleton (x) \(=(z\)
    pair w))))]

Since \(\{x\} \in\{\{x\},\{x, y\}\}=\{\{z\},\{z, w\}\}\), we have \(\{x\}=\{z\}\) or \(\{x\}=\) \(\{z, w\}\). We proceed to reason by cases.

Lestrade execution:
```

 open
    ```
            \% case \(\{x\}=\{z\}\)-- goal is \(x=z\)
        declare hyp that singleton \(\mathrm{x}=\) singleton \(\backslash\)
            z
>>
    hyp: that (singleton(x) = singleton(z))
>>
                    \{move 3\}
        define line3 hyp : Substitution2 hyp, \}
            x pair1 x
>> line3: [(hyp_1:that (singleton(x) =
>> singleton(z))) \(\Rightarrow\) (---:that (x E
>> singleton(z)))]
>>
        define line4 hyp : pair3 line3 hyp
>> line4: [(hyp_1:that (singleton(x) =
>> singleton(z))) => (---:that ((x
>> \(\quad\) z) V ( \(\mathrm{x}=\mathrm{z})\) ))]
>> \{move 2\}
\(\begin{array}{lr}\gg & \text { line5: [(hyp_1:that (singleton(x) }= \\ \gg & \text { singleton(z))) } \Rightarrow \text { (---:that (x = }\end{array}\)
```

>>
>>
z))]
{move 2}
We have achieved the goal of this case.
Lestrade execution:
close
define line7 : Deduction line5
line7: [(---:that ((singleton(x) = singleton(z))
-> (x = z)))]
\{move 1\}
open
declare hyp that singleton x = z pair \
w
>> hyp: that (singleton(x) = (z pair w))
>> {move 3}
define line8 hyp : Substitution2 (Symmeq \
hyp,z pair1 w)
>> line8: [(hyp_1:that (singleton(x) =
>> (z pair w))) => (---:that (z E singleton(x)))]
>> {move 2}
define line10 hyp: Porp pair3 line8 \
hyp
>> line10: [(hyp_1:that (singleton(x)
>> = (z pair w))) => (---:that (z =
>> x))]
>> {move 2}

```
define line11 hyp: Symmeq line10 hyp
```

>> line11: [(hyp_1:that (singleton(x)
>> = (z pair w))) => (---:that (x =
>> z))]
>> {move 2}
close
define line12: Deduction line11
line12: [(---:that ((singleton(x) = (z
pair w)) -> (x = z)))]
{move 1}
define proj1 pairsequal : Cases(line2 \
pairsequal, line7, line12)
proj1: [(pairsequal_1:that ((x Pair y)
= (z Pair w))) => (---:that (x = z))]
{move 1}

```

We have proved \(x=z\) : it remains to prove \(y=w\).
Lestrade execution:
define line13 pairsequal: Substitution2 \}
(pairsequal, pair2 singleton \(x\), \(x\) pair \(\backslash\) y)
>> line13: [(pairsequal_1:that ((x Pair y)
\(\gg \quad=(z\) Pair w))) \(\Rightarrow\) (---:that ((x pair
>> \(\quad\) ) E (z Pair w)))]
>> \{move 1\}
```

 define line14 pairsequal: pair3 line13 \
 pairsequal
 >> line14: [(pairsequal_1:that ((x Pair y)
>>
y) = singleton(z)) V ((x pair y) =
(z pair w))))]
{move 1}

```

Considering \(\{x, y\} \in(x, y)=(z, w)\), we draw the conclusion that either \(\{x, y\}=\{z\}\) or \(\{x, y\}=\{z, w\}\), and proceed to reason by cases.

\section*{Lestrade execution:}
```

 open
 declare hyp that (x pair y) = singleton \
 z
 >> hyp: that ((x pair y) = singleton(z))
>> {move 3}
define line15 hyp : Substitution2 hyp \
x pair1 y
>> line15: [(hyp_1:that ((x pair y) =
>> singleton(z))) => (---:that (x E
>> singleton(z)))]
>> {move 2}
define line16 hyp : Substitution2 hyp \
x pair2 y
>> line16: [(hyp_1:that ((x pair y) =
>> singleton(z))) => (---:that (y E
>> singleton(z)))]
>> {move 2}

```
```

 define line17 hyp: Porp pair3 line15 \
 hyp
 >>
>>
>>
>>
define line18 hyp: Porp pair3 line16 \
hyp
line18: [(hyp_1:that ((x pair y) =
singleton(z))) => (---:that (y =
z))]
{move 2}

```
```

define line19 hyp: Substitution2 Symmeq \

```
define line19 hyp: Substitution2 Symmeq \
    pairsequal, pair2 singleton \
    pairsequal, pair2 singleton \
    z, z pair w
    z, z pair w
    line19: [(hyp_1:that ((x pair y) =
    line19: [(hyp_1:that ((x pair y) =
        singleton(z))) => (---:that ((z
        singleton(z))) => (---:that ((z
        pair w) E (x Pair y)))]
        pair w) E (x Pair y)))]
        {move 2}
        {move 2}
    define line20 hyp : pair3 line19 hyp
    line20: [(hyp_1:that ((x pair y) =
            singleton(z))) => (---:that (((z
        pair w) = singleton(x)) V ((z pair
        w) = (x pair y))))]
            {move 2}
```

By considering $\{z, w\} \in(z, w)=(x, y)$, we see that $\{z, w\}=\{x\}$ or $\{z, w\}=$ $\{x, y\}$, and yet again we reason by cases.

Lestrade execution:

open

```
    declare hyp2 that (z pair w) = singleton(x)
declare hyp2 that (z pair w) = singleton(x)
```

 hyp2: that ((z pair w) = singleton(x))
 \{move 4\}
 hyp2: that ((z pair w) = singleton(x))
\{move 4\}
define line21 hyp2 : Substitution2 \}
(Symmeq line18 hyp, \}
Substitution2 (line17 hyp,hyp2))
line21: [(hyp2_1:that ((z pair w) = singleton(x))) => (---:that ((y pair w) = singleton(y)))]
\{move 3\}
define line22 hyp2: Substitution2 \}
(line21 hyp2, pair2 y w)
line22: [(hyp2_1:that ((z pair w) = singleton(x))) => (---:that (w E singleton(y)))]
\{move 3\}
define line23 hyp2: Symmeq Porp \}
pair3 line22 hyp2
line23: [(hyp2_1:that ((z pair w) = singleton(x))) => (---:that ($\mathrm{y}=\mathrm{w}$))]
\{move 3\}
close

```
define line24 hyp: Deduction line23
    line24: [(hyp_1:that ((x pair y) =
                singleton(z))) => (---:that (((z
        pair w) = singleton(x)) -> (y =
        w)))]
        {move 2}
```

 open
 declare hyp2 that (z pair w) \(=x\) \}
 pair y
 hyp2: that ((z pair w) = (x pair
 y)) \{move 4\}
 define line25 hyp2 : Substitution2 \}
 (Symmeq line18 hyp, \}
 Substitution2 (line17 hyp,hyp2))
 line25: [(hyp2_1:that ((z pair w)
 = (x pair y))) => (---:that ((y
 pair w) = (y pair y)))]
 \{move 3\}
 define line26 hyp2: Substitution2 \}
 (line25 hyp2, pair2 y w)
 line26: [(hyp2_1:that ((z pair w)
 = (x pair y))) \(=>\) (---:that (w
 E (y pair y)))]
 \{move 3\}
 define line27 hyp2: Symmeq Porp \}
 pair3 line26 hyp2
    ```
            line27: [(hyp2_1:that ((z pair w)
                    = (x pair y))) => (---:that (y
                        = w))]
            {move 3}
            close
    define line28 hyp: Deduction line27
    line28: [(hyp_1:that ((x pair y) =
                    singleton(z))) => (---:that (((z
                    pair w) = (x pair y)) -> (y = w)))]
            {move 2}
    define line29 hyp: Cases (line20 hyp, \
        line24 hyp,line28 hyp)
    line29: [(hyp_1:that ((x pair y) =
            singleton(z))) => (---:that (y =
            w))]
        {move 2}
        close
define line30 pairsequal : Deduction line29
    line30: [(pairsequal_1:that ((x Pair y)
            = (z Pair w))) => (---:that (((x pair
            y) = singleton(z)) -> (y = w)))]
        {move 1}
open
    declare hyp that (x pair y) = z pair \
        w
```

```
>> hyp: that ((x pair y) = (z pair w))
>>
define line31 hyp: Substitution2 (proj1 \
    pairsequal, hyp)
    line31: [(hyp_1:that ((x pair y) =
                    (z pair w))) => (---:that ((z pair
                    y) = (z pair w)))]
            {move 2}
define line32 hyp : Substitution2(line31 \
        hyp,pair2 z y)
    line32: [(hyp_1:that ((x pair y) =
                    (z pair w))) => (---:that (y E (z
            pair w)))]
        {move 2}
    define line33 hyp: pair3 line32 hyp
    line33: [(hyp_1:that ((x pair y) =
            (z pair w))) => (---:that ((y =
            z) V (y = w)))]
        {move 2}
```

We need to show that if $y=z$, it follows that $y=w$.
Lestrade execution:

open

declare hyp2 that $\mathrm{y}=\mathrm{z}$
hyp2: that ($\mathrm{y}=\mathrm{z}$) \{move 4\}

```
```

 define line34 hyp2: Substitution2(Symmeq \
    ```
```

 define line34 hyp2: Substitution2(Symmeq \
 hyp2, Substitution2(proj1 \
 hyp2, Substitution2(proj1 \
 pairsequal,hyp))
    ```
    pairsequal,hyp))
```

```
    line34: [(hyp2_1:that (y = z)) =>
```

 line34: [(hyp2_1:that (y = z)) =>
 (---:that ((y pair y) = (y pair
 (---:that ((y pair y) = (y pair
 w)))]
 w)))]
 {move 3}
 {move 3}
 define line35 hyp2 : Substitution2(Symmeq \
 define line35 hyp2 : Substitution2(Symmeq \
 line34 hyp2,pair2 y w)
 line34 hyp2,pair2 y w)
 line35: [(hyp2_1:that (y = z)) =>
 line35: [(hyp2_1:that (y = z)) =>
 (---:that (w E (y pair y)))]
 (---:that (w E (y pair y)))]
 {move 3}
 {move 3}
 define line36 hyp2 : Symmeq Porp \
 define line36 hyp2 : Symmeq Porp \
 pair3 line35 hyp2
 pair3 line35 hyp2
 line36: [(hyp2_1:that (y = z)) =>
 line36: [(hyp2_1:that (y = z)) =>
 (---:that (y = w))]
 (---:that (y = w))]
 {move 3}
 {move 3}
 close
 close
 define line37 hyp: Deduction line36
 define line37 hyp: Deduction line36
 line37: [(hyp_1:that ((x pair y) =
 line37: [(hyp_1:that ((x pair y) =
 (z pair w))) => (---:that ((y =
 (z pair w))) => (---:that ((y =
 z) -> (y = w)))]
 z) -> (y = w)))]
 {move 2}
 {move 2}
 declare techfix that y=w
 declare techfix that y=w
 techfix: that (y = w) {move 3}
    ```
        techfix: that (y = w) {move 3}
```

```
        define line38 hyp: Cases (line33 hyp, \
            line37 hyp, Deduction[techfix => techfix])
>> line38: [(hyp_1:that ((x pair y) =
>> (z pair w))) => (---:that (y = w))]
>> {move 2}
        close
    define line39 pairsequal : Deduction line38
        line39: [(pairsequal_1:that ((x Pair y)
            = (z Pair w))) => (---:that (((x pair
            y) = (z pair w)) -> (y = w)))]
        {move 1}
    define proj2 pairsequal : Cases(line14 \
        pairsequal, line30 pairsequal, line39 pairsequal)
        proj2: [(pairsequal_1:that ((x Pair y)
            = (z Pair w))) => (---:that (y = w))]
        {move 1}
    close
declare Pairsequal that (x Pair y) = z Pair \
    w
>> Pairsequal: that ((x Pair y) = (z Pair w))
>> {move 1}
```

```
define Proj1 Pairsequal : proj1 Pairsequal
>> Proj1: [(.x_1:obj),(.y_1:obj),(.z_1:obj),
>> (.w_1:obj),(Pairsequal_1:that ((.x_1 Pair
>> .y_1) = (.z_1 Pair .w_1))) => ( ... :that
>> (.x_1 = .z_1))]
>> {move 0}
define Proj2 Pairsequal : proj2 Pairsequal
>> Proj2: [(.x_1:obj),(.y_1:obj),(.z_1:obj),
>> (.w_1:obj),(Pairsequal_1:that ((.x_1 Pair
>> .y_1) = (.z_1 Pair .w_1))) => ( ... :that
>> (.y_1 = .w_1))]
>> {move 0}
showdefs
We export the projection equality theorems from the block.
Lestrade execution:
```

```
declare xzev that singleton x = singleton \
```

declare xzev that singleton x = singleton \
z
z
>> xzev: that (singleton(x) = singleton(z))
>> xzev: that (singleton(x) = singleton(z))
>> {move 1}
>> {move 1}
define Equalsingletons x z : line7
define Equalsingletons x z : line7
>> Equalsingletons: [(x_1:obj),(z_1:obj) =>
>> Equalsingletons: [(x_1:obj),(z_1:obj) =>
>> (Deduction([(hyp_2:that (singleton(x_1)
>> (Deduction([(hyp_2:that (singleton(x_1)
>> = singleton(z_1))) => (Cases(pair3((hyp_2
>> = singleton(z_1))) => (Cases(pair3((hyp_2
>> Substitution2 (x_1 pair1 x_1))),Deduction([(pp_4:
>> Substitution2 (x_1 pair1 x_1))),Deduction([(pp_4:
>> that (x_1 = z_1)) => (pp_4:that
>> that (x_1 = z_1)) => (pp_4:that
>> (x_1 = z_1))]),
>> (x_1 = z_1))]),
>> Deduction([(pp_5:that (x_1 = z_1))

```
>> Deduction([(pp_5:that (x_1 = z_1))
```

```
>> => (pp_5:that (x_1 = z_1))]))
>> :that (x_1 = z_1))])
>> :that ((singleton(x_1) = singleton(z_1))
>> -> (x_1 = z_1)))]
>> {move 0}
```

We export the lemma line7 as an independent theorem.
We now present the Axiom of Separation, the presumably safe version of the contradictory axiom of comprehension from which Russell's paradox can be deduced. The idea is that a predicate determines a set, when restricted to a previously given set.

```
Lestrade execution:
clearcurrent
declare x obj
>> x: obj {move 1}
declare y obj
>> y: obj {move 1}
declare pred [x => prop] \
>> pred: [(x_1:obj) => (---:prop)]
>> {move 1}
postulate setof x pred obj
>> setof: [(x_1:obj),(pred_1:[(x_2:obj) => (---:
>> prop)])
>> => (---:obj)]
```

```
postulate Sep0 x pred that Isset setof x \
    pred
>> Sep0: [(x_1:obj),(pred_1:[(x_2:obj) => (---:
>> prop)])
>> => (---:that Isset((x_1 setof pred_1)))]
>> {move 0}
declare inev1 that y E x
>> inev1: that (y E x) {move 1}
declare inev2 that pred y
>> inev2: that pred(y) {move 1}
```

```
postulate Sep01 pred, inev1 inev2 that y \
```

postulate Sep01 pred, inev1 inev2 that y \
E setof x pred
E setof x pred
>> Sep01: [(pred_1:[(x_2:obj) => (---:prop)]),
>> Sep01: [(pred_1:[(x_2:obj) => (---:prop)]),
>> (.y_1:obj),(.x_1:obj),(inev1_1:that (.y_1
>> (.y_1:obj),(.x_1:obj),(inev1_1:that (.y_1
>> E .x_1)),(inev2_1:that pred_1(.y_1)) =>
>> E .x_1)),(inev2_1:that pred_1(.y_1)) =>
>> (---:that (.y_1 E (.x_1 setof pred_1)))]
>> (---:that (.y_1 E (.x_1 setof pred_1)))]
>> {move 0}

```
>> {move 0}
```

```
define Sep1 inev1 inev2: Sep01 pred, inev1 \
    inev2
>> Sep1: [(.y_1:obj),(.x_1:obj),(inev1_1:that
>> (.y_1 E .x_1)),(.pred_1:[(x_2:obj) =>
>> (---:prop)]),
>> (inev2_1:that .pred_1(.y_1)) => (Sep01(.pred_1,
>> inev1_1,inev2_1):that (.y_1 E (.x_1 setof
>> .pred_1)))]
```

```
>> {move 0}
```

```
declare inev3 that y E setof x pred
>> inev3: that (y E (x setof pred)) {move 1}
postulate Sep2 inev3 that y E x
>> Sep2: [(.y_1:obj),(.x_1:obj),(.pred_1:[(x_2:
>> obj) => (---:prop)]),
>> (inev3_1:that (.y_1 E (.x_1 setof .pred_1)))
>> => (---:that (.y_1 E .x_1))]
>> {move 0}
```

```
postulate Sep3 inev3 that pred y
>> Sep3: [(.y_1:obj),(.x_1:obj),(.pred_1:[(x_2:
>> obj) => (---:prop)]),
>> (inev3_1:that (.y_1 E (.x_1 setof .pred_1)))
>> => (---:that .pred_1(.y_1))]
>> {move 0}
```

We prove that for every set x, there is y such that $y \notin x$.
Lestrade execution:
define Notin x : setof x [y=> ~(y E y)] \}

```
>> Notin: [(x_1:obj) => ((x_1 setof [(y_2:obj)
>> \quad> (~ ((y_2 E y_2)):prop)])
>> :obj)]
>> {move 0}
```

```
open
    declare hyp that Notin x E x
        hyp: that (Notin(x) E x) {move 2}
    open
        declare hyp2 that Notin x E Notin x
                hyp2: that (Notin(x) E Notin(x)) {move
                    3}
        define line1 hyp2 : Sep3 hyp2
            line1: [(hyp2_1:that (Notin(x) E Notin(x)))
                        => (---:that ~((Notin(x) E Notin(x))))]
                        {move 2}
        define line2 hyp2 : Mp hyp2 line1 hyp2
            line2: [(hyp2_1:that (Notin(x) E Notin(x)))
                        => (---:that ??)]
            {move 2}
        close
    define line3 : Negintro line2
        line3: [(---:that ~((Notin(x) E Notin(x))))]
            {move 1}
define line4 hyp: Fixprop (Notin x E Notin \
```

```
        x,Sep1 hyp line3)
        line4: [(hyp_1:that (Notin(x) E x)) =>
        (---:that (Notin(x) E Notin(x)))]
    {move 1}
    define line5 hyp: Mp line4 hyp line3
        line5: [(hyp_1:that (Notin(x) E x)) =>
            (---:that ??)]
        {move 1}
    close
define Reallynotin x : Negintro line5
    Reallynotin: [(x_1:obj) => (Negintro([(hyp_2:
            that (Notin(x_1) E x_1)) => ((((Notin(x_1)
            E Notin(x_1)) Fixprop (hyp_2 Sep1 Negintro([(hyp2_4:
                that (Notin(x_1) E Notin(x_1)))
                    => ((hyp2_4 Mp Sep3(hyp2_4)):that
                    ??)]))
                ) Mp Negintro([(hyp2_6:that (Notin(x_1)
                    E Notin(x_1))) => ((hyp2_6 Mp Sep3(hyp2_6)):
                    that ??)]))
            :that ??)])
        :that ~((Notin(x_1) E x_1)))]
    {move 0}
```

The theorem above is the tame local version of Russell's paradox: for every set x we can produce a non-member of x (quite explicitly!)

We briefly address the question as to whether the axiom implemented in Sep1-3 is an axiom strictly speaking or a scheme. Our position is that its status is intermediate. As long as we do not define second order quantification (which is possible in Lestrade with suitable declarations), the logical power of our axioms is no greater than that of the usual first order scheme (basically, as long as the only classes (functions from obj to prop) we can postulate are the ones which are defined using the constructions of first order logic). But if we add more primitives allowing construction of classes in more complex ways, we automatically get more power. In Automath, where quantification over any sort
is unavoidably implemented, definitions along these lines would unmistakably give second order Zermelo. We do know how to restrict the power of separation so that adding new constructions will not give it any more power than the first order scheme, but use of such axioms would be laborious.

We now tackle the implementation of the axiom of power set.
Lestrade execution:
clearcurrent
declare x obj
>> x: obj \{move 1\}
declare y obj
>> y: obj \{move 1\}
declare z obj
>> z: obj \{move 1\}
define C x y : (Isset x) \& Forall [z=> (z \}
E x) \rightarrow z E y] \}
>> C: [(x_1:obj), (y_1:obj) => ((Isset (x_1) \&
>> Forall $\left(\left[\left(z_{-} 2: o b j\right)=>\left(\left(\left(z_{-} 2 E \times x_{-}\right)\right)->\right.\right.\right.$
>> (z_2 E y_1)):prop)]))
>> :prop)]
>> \{move 0\}
postulate Pow x obj
>> Pow: [(x_1:obj) => (---:obj)]

```
>> {move 0}
declare inev that z E y
>> inev: that (z E y) {move 1}
declare inpow that y E Pow x
>> inpow: that (y E Pow(x)) {move 1}
postulate Pow1 inev inpow that z E x
>> Pow1: [(.z_1:obj),(.y_1:obj),(inev_1:that
>> (.z_1 E .y_1)),(.x_1:obj),(inpow_1:that
>> (.y_1 E Pow(.x_1))) => (---:that (.z_1
>> E .x_1))]
>> {move 0}
```

```
postulate Powb1 inpow that Isset y
```

postulate Powb1 inpow that Isset y
>> Powb1: [(.y_1:obj),(.x_1:obj),(inpow_1:that
>> Powb1: [(.y_1:obj),(.x_1:obj),(inpow_1:that
>> (.y_1 E Pow(.x_1))) => (---:that Isset(.y_1))]
>> (.y_1 E Pow(.x_1))) => (---:that Isset(.y_1))]
>> {move 0}
>> {move 0}
declare sety that Isset y
>> sety: that Isset(y) {move 1}
declare infun [z,inev => that z E x] \
>> infun: [(z_1:obj),(inev_1:that (z_1 E y))

```
```

>> => (---:that (z_1 E x))]
>> {move 1}
postulate Pow2 sety infun that y E Pow x
>> Pow2: [(.y_1:obj),(sety_1:that Isset(.y_1)),
>> (.x_1:obj),(infun_1:[(z_2:obj),(inev_2:
>> that (z_2 E .y_1)) => (---:that (z_2
>> E .x_1))])
>> => (---:that (.y_1 E Pow(.x_1)))]
>> {move 0}

```

We define the subset relation and introduce basic declarations for the power set construction. We actually have not mentioned the subset relation in the formulation of our primitives supporting the power set: we demonstrate appropriate equivalences. We require that subsets not be atoms, but we do allow atoms to have the empty set as a subset; elements of power sets are stipulated to be sets.
```

Lestrade execution:

```
open
    declare powev1 that y E Pow x
>> powev1: that (y E Pow(x)) \{move 2\}
    declare powev2 that y C x
>> powev2: that (y C x) \{move 2\}
    open
            declare z1 obj
>> \(\quad\) z1: obj \{move 3\}
```

 open
 declare ev1 that z1 E y
 >>
define line1 ev1 : Pow1 ev1 powev1
>>
>>
>>
close
define line2 z1 : Deduction line1
line2: [(z1_1:obj) => (---:that ((z1_1
E y) -> (z1_1 E x)))]
{move 2}
close
define subpow1 powev1 : Fixprop (y C x, \
Conjunction(Powb1 powev1,Ug line2))
subpow1: [(powev1_1:that (y E Pow(x)))
=> (---:that (y C x))]
{move 1}
open
declare z1 obj
z1: obj {move 3}

```
```

 declare ev1 that z1 E y
 >>
ev1: that (z1 E y) {move 3}
define line1 z1: Ui Simplification2 \
powev2 z1
>> line1: [(z1_1:obj) => (---:that ((z1_1
>> E y) -> (z1_1 E x)))]
>> {move 2}
define line3 z1 ev1 : Mp ev1 line1 \
z1
>> line3: [(z1_1:obj),(ev1_1:that (z1_1
>> E y)) => (---:that (z1_1 E x))]
>>
{move 2}
close
define subpow2 powev2 : Pow2 Simplification1 \
powev2 line3
subpow2: [(powev2_1:that (y C x)) => (---:
that (y E Pow(x)))]
{move 1}
close
declare Powev1 that y E Pow x
>> Powev1: that (y E Pow(x)) {move 1}

```
```

declare Powev2 that y C x
>> Powev2: that (y C x) {move 1}
define Subpow1 Powev1:subpow1 Powev1
Subpow1: [(.y_1:obj),(.x_1:obj),(Powev1_1:
that (.y_1 E Pow(.x_1))) => (((.y_1 C
.x_1) Fixprop (Powb1(Powev1_1) Conjunction
Ug([(z1_4:obj) => (Deduction([(ev1_5:that
(z1_4 E .y_1)) => ((ev1_5 Pow1 Powev1_1):
that (z1_4 E .x_1))])
:that ((z1_4 E .y_1) -> (z1_4 E .x_1)))]))
):that (.y_1 C .x_1))]
{move 0}
define Subpow2 Powev2:subpow2 Powev2
>> Subpow2: [(.y_1:obj),(.x_1:obj),(Powev2_1:
>> that (.y_1 C .x_1)) => ((Simplification1(Powev2_1)
>> Pow2 [(z1_3:obj),(ev1_3:that (z1_3 E .y_1))
>> \quad> ((ev1_3 Mp (Simplification2(Powev2_1)
>> Ui z1_3)):that (z1_3 E .x_1))])
>> :that (.y_1 E Pow(.x_1)))]
>> {move 0}

```

We have presented a proof of the equivalence of membership in the power set as defined with our given axioms with the subset relation as usually formalized. We could have given these rules as the basic axioms for the power set construction as well: we think that the ones we have given are somehow more basic. In any event the approaches are demonstrably equivalent.

We now develop the axiom of union. In developing the primitives for union, we were not as successful at avoiding explicit use of logical constructions as we were with power set.
```

Lestrade execution:
clearcurrent

```
```

declare x obj
>> x: obj {move 1}
declare y obj
>> y: obj {move 1}
declare z obj
>> z: obj {move 1}
postulate Union x obj
>> Union: [(x_1:obj) => (---:obj)]
>> {move 0}
declare inev1 that y E z
>> inev1: that (y E z) {move 1}
declare inev2 that z E x
>> inev2: that (z E x) {move 1}
postulate Union1 inev1 inev2 that y E Union \
x
>> Union1: [(.y_1:obj),(.z_1:obj),(inev1_1:that
>> (.y_1 E .z_1)),(.x_1:obj),(inev2_1:that
>> (.z_1 E .x_1)) => (---:that (.y_1 E Union(.x_1)))]
>> {move 0}

```
```

declare inev3 that y E Union x
>> inev3: that (y E Union(x)) {move 1}
postulate Union2 inev3 that Exists [z=>(y \
E z) \& z E x] \
>> Union2: [(.y_1:obj),(.x_1:obj),(inev3_1:that
>> (.y_1 E Union(.x_1))) => (---:that Exists([(z_2:
obj) => (((.y_1 E z_2) \& (z_2 E .x_1)):
>> prop)]))
>>]
>> {move 0}
postulate Union3 x that Isset Union x
>> Union3: [(x_1:obj) => (---:that Isset(Union(x_1)))]
>> {move 0}

```

We define some basic operations of set theory (from the standpoint of undergraduate students: they are actually seen to be derivative notions here).

Lestrade execution:
```

declare u obj
>> u: obj {move 1}

```
declare v obj
>> v: obj \{move 1\}
```

define U x y : Union (x pair y)
>> U: [(x_1:obj),(y_1:obj) => (Union((x_1 pair
>> y_1)):obj)]
>> {move 0}
define cap x y : setof x [z => z E y] \
>> cap: [(x_1:obj),(y_1:obj) => ((x_1 setof
>> [(z_2:obj) => ((z_2 E y_1):prop)])
>> :obj)]
>> {move 0}
define -- x y : setof x [z => ~(z E y)] \
>> --: [(x_1:obj),(y_1:obj) => ((x_1 setof [(z_2:
>> obj) => (~ ((z_2 E y_1)):prop)])
>> :obj)]
>> {move 0}
define X x y : setof ((Pow(Pow(x U y))), \
[z=>Exists[u=> Exists[v=>(u E x) \& (v E \
y) \& (z = (u Pair v))] \
] \
]) \

```
```

>> X: [(x_1:obj),(y_1:obj) => ((Pow(Pow((x_1

```
>> X: [(x_1:obj),(y_1:obj) => ((Pow(Pow((x_1
>> U y_1))) setof [(z_2:obj) => (Exists([(u_3:
>> U y_1))) setof [(z_2:obj) => (Exists([(u_3:
>> obj) => (Exists([(v_4:obj) => (((u_3
>> obj) => (Exists([(v_4:obj) => (((u_3
>> E x_1) & ((v_4 E y_1) & (z_2
```

>> E x_1) \& ((v_4 E y_1) \& (z_2

```
```

>> = (u_3 Pair v_4)))):prop)])
>> :prop)])
>> :prop)])
>> :obj)]
>> {move 0}

```

The union, intersection, relative difference and Cartesian product operations of course cry out for proofs of relevant theorems.

We develop the axiom of infinity (using Zermelo's original implementation of the natural numbers).
```

Lestrade execution:
clearcurrent
declare m obj
>> m: obj {move 1}
declare n obj
>> n: obj {move 1}
postulate Nat obj
>> Nat: obj {move 0}

```
postulate Zeroax that Empty E Nat
>> Zeroax: that (Empty E Nat) \{move 0\}
declare natev that n E Nat
>> natev: that (n E Nat) \{move 1\}
```

postulate Succax natev that singleton n E \
Nat
>> Succax: [(.n_1:obj),(natev_1:that (.n_1 E
>> Nat)) => (---:that (singleton(.n_1) E
>> Nat))]
>> {move 0}
declare I obj
>> I: obj {move 1}
declare izeroev that Empty E I
>> izeroev: that (Empty E I) {move 1}
declare iniev that n E I
>> iniev: that (n E I) {move 1}
declare inductionev [n,iniev => that singleton \
n E I] \
>> inductionev: [(n_1:obj),(iniev_1:that (n_1
>> E I)) => (---:that (singleton(n_1) E I))]
>> {move 1}
declare iniev2 that n E I
>> iniev2: that (n E I) {move 1}

```
```

postulate Induction izeroev inductionev, \
iniev2 that n E Nat
Induction: [(.I_1:obj),(izeroev_1:that (Empty
>> E .I_1)),(inductionev_1:[(n_2:obj),(iniev_2:
>> that (n_2 E .I_1)) => (---:that (singleton(n_2)
>> E .I_1))]),
>> (.n_1:obj),(iniev2_1:that (.n_1 E .I_1))
>> => (---:that (.n_1 E Nat))]
>> {move 0}

```

In defining the primitives for the natural numbers, we continue our pattern of avoiding logical constructions in the declarations of our primitives. A more usual form of mathematical induction using quantifiers can certainly be developed, and proofs of the axioms of Peano arithmetic would be in order here. Development of the iteration theorem would also be useful.

We now develop the axiom of choice. There is a quick and brutal way, and the usual way.
```

Lestrade execution:
clearcurrent
declare x obj
>> x: obj {move 1}
declare y obj
>> y: obj {move 1}

```
postulate Choose x obj
>> Choose: [(x_1:obj) => (---:obj)]
>> \{move 0\}
```

declare inev that y E x
>> inev: that (y E x) {move 1}
postulate Choose1 inev that Choose x E x
>> Choose1: [(.y_1:obj),(.x_1:obj),(inev_1:that
>> (.y_1 E .x_1)) => (---:that (Choose(.x_1)
>> E .x_1))]
>> {move 0}

```

It's that simple: provide a way to choose an element from each nonempty set. And results about the conservative nature of global choice as an extension of ordinary set theory suggest that this is essentially harmless. However, we present a more cautious approach as well.

Lestrade execution:
clearcurrent
declare \(P\) obj
>> P: obj \{move 1\}
declare A obj
>> A: obj \{move 1\}
declare B obj
>> B: obj \{move 1\}
declare x obj
```

>> x: obj {move 1}
declare ainp that A E P
>> ainp: that (A E P) {move 1}
declare binp that B E P
>> binp: that (B E P) {move 1}
declare xina that x E A
>> xina: that (x E A) {move 1}
declare xinb that x E B
>> xinb: that (x E B) {move 1}
declare inhabited [A,ainp => that Exists[x=>x \
E A] \
] \
>> inhabited: [(A_1:obj),(ainp_1:that (A_1 E
>> P)) => (---:that Exists([(x_2:obj) =>
>> ((x_2 E A_1):prop)]))
>>]
>> {move 1}

```
```

declare pairwise [A,B,x,ainp,binp,xina,xinb \

```
declare pairwise [A,B,x,ainp,binp,xina,xinb \
    => that A=B] \
```

 => that A=B] \
    ```
```

>> pairwise: [(A_1:obj),(B_1:obj),(x_1:obj),
>> (ainp_1:that (A_1 E P)),(binp_1:that (B_1
>> E P)),(xina_1:that (x_1 E A_1)),(xinb_1:
>> that (x_1 E B_1)) => (---:that (A_1 =
>> B_1))]
>> {move 1}
declare C1 obj
>> C1: obj {move 1}
declare c obj
>> c: obj {move 1}
define choiceset P C1 : Forall [c=> (c E \
C1) -> Exists[A => (A E P) \& singleton \
c = A cap C1] \
] \
\& Forall[A=>(A E P)-> Exists[c => (c E C1) \
\& c E A] \
] \
>> choiceset: [(P_1:obj),(C1_1:obj) => ((Forall([(c_2:
>> obj) => (((c_2 E C1_1) -> Exists([(A_3:
>> obj) => (((A_3 E P_1) \& (singleton(c_2)
>> = (A_3 cap C1_1))):prop)]))
>> :prop)])
>> \& Forall([(A_4:obj) => (((A_4 E P_1) ->
>> Exists([(c_5:obj) => (((c_5 E C1_1)
>> \& (c_5 E A_4)):prop)]))
>> :prop)]))
>> :prop)]

```
```

postulate Choice P, inhabited, pairwise that \
Exists[C1 => choiceset P C1] \
>> Choice: [(P_1:obj),(inhabited_1:[(A_2:obj),
>> (ainp_2:that (A_2 E P_1)) => (---:that
>> Exists([(x_3:obj) => ((x_3 E A_2):prop)]))
>>]),
>> (pairwise_1:[(A_4:obj),(B_4:obj),(x_4:
>> obj),(ainp_4:that (A_4 E P_1)),(binp_4:
>> that (B_4 E P_1)),(xina_4:that (x_4
>> E A_4)),(xinb_4:that (x_4 E B_4)) =>
>> (---:that (A_4 = B_4))])
>> => (---:that Exists([(C1_5:obj) => ((P_1
>> choiceset C1_5):prop)]))
>>]
>> {move 0}

```

We present the usual formulation of the axiom of choice, asserting that every partition has a choice set.

\subsection*{4.3 Toward a proof of the Well-Ordering Theorem}

Our aim in this section is to prove the Well-Ordering Theorem. Supporting the proof of this theorem seems to have been the immediate motivation for Zermelo's presentation of his axioms in 1908. We will emulate Zermelo in attempting a proof of the theorem which makes no use of the ordered pair: Zermelo did not know that ordered pairs were representable in set theory; this was revealed by Norbert Wiener in 1914.

Since we are not going to represent relations as sets of ordered pairs, we have to explain how we are going to represent them.
```

Lestrade execution:

```
clearcurrent
declare x obj
```

>> x: obj {move 1}
declare y obj
>> y: obj {move 1}
declare z obj
>> z: obj {move 1}
declare R [x,y => prop] \
>> R: [(x_1:obj),(y_1:obj) => (---:prop)]
>> {move 1}
define transitive R : Forall [x=>Forall [y=>Forall \
[z=>((x R y) \& (y R z))->x R z] \
] \
] \
>> transitive: [(R_1:[(x_2:obj),(y_2:obj) =>
>> (---:prop)])
>> => (Forall([[(x_3:obj) => (Forall([(y_4:
>> obj) => (Forall([(z_5:obj) => ((((x_3
>> R_1 y_4) \& (y_4 R_1 z_5)) ->
>> (x_3 R_1 z_5)):prop)])
>> :prop)])
>> :prop)])
>> :prop)]
>> {move 0}

```
```

declare A obj
>> A: obj {move 1}
define field R, A: Forall[x=>Forall[y=> (x \
R y) -> (x E A) \& y E A] \
] \

```
```

>> field: [(R_1:[(x_2:obj),(y_2:obj) => (---:

```
>> field: [(R_1:[(x_2:obj),(y_2:obj) => (---:
>> prop)]),
>> prop)]),
>> (A_1:obj) => (Forall([(x_3:obj) => (Forall([(y_4:
>> (A_1:obj) => (Forall([(x_3:obj) => (Forall([(y_4:
>> obj) => (((x_3 R_1 y_4) -> ((x_3
>> obj) => (((x_3 R_1 y_4) -> ((x_3
>> E A_1) & (y_4 E A_1))):prop)])
>> E A_1) & (y_4 E A_1))):prop)])
>> :prop)])
>> :prop)])
>> :prop)]
>> :prop)]
>> {move 0}
```

>> {move 0}

```
```

declare fldev that field R,A
>> fldev: that field(R,A) {move 1}
define reflexive fldev : Forall[x=>(x E A) \
-> x R x] \
>> reflexive: [(.R_1:[(x_2:obj),(y_2:obj) =>
>> (---:prop)]),
>> (.A_1:obj),(fldev_1:that field(.R_1,.A_1))
>> => (Forall([(x_3:obj) => (((x_3 E .A_1)
>> -> (x_3 .R_1 x_3)):prop)])
>> :prop)]
>> {move 0}

```
```

define relrep x y A: (y E Union A) \& Forall[z=> \
((z E A) \& (y E z))-> x E z] \

```
```

>> relrep: [(x_1:obj),(y_1:obj),(A_1:obj) =>

```
>> relrep: [(x_1:obj),(y_1:obj),(A_1:obj) =>
>> (((y_1 E Union(A_1)) & Forall([(z_2:obj)
>> (((y_1 E Union(A_1)) & Forall([(z_2:obj)
>> => ((((z_2 E A_1) & (y_1 E z_2)) ->
>> => ((((z_2 E A_1) & (y_1 E z_2)) ->
>> (x_1 E z_2)):prop)]))
>> (x_1 E z_2)):prop)]))
>> :prop)]
>> :prop)]
>> {move 0}
```

>> {move 0}

```
declare u obj
>> u: obj \{move 1\}
define seg fldev u : setof \(A\) [y=>y R u] \}
>> seg: [(.R_1:[(x_2:obj),(y_2:obj) => (---:
>> prop)]),
>> (.A_1:obj),(fldev_1:that field(.R_1,.A_1)),
>> (u_1:obj) => ((.A_1 setof [(y_3:obj) =>
>> ((y_3 .R_1 u_1):prop)])
>> :obj)]
>> \{move 0\}
define segset fldev u : Sep0 A [y=>y R u] \}
>> segset: [(.R_1:[(x_2:obj),(y_2:obj) => (---:
>> prop)]),
>> (.A_1:obj),(fldev_1:that field(.R_1,.A_1)),
```

>> (u_1:obj) => ((.A_1 Sep0 [(y_3:obj) =>
>> ((y_3 .R_1 u_1):prop)])
>> :that Isset((.A_1 setof [(y_4:obj) =>
>> ((y_4 .R_1 u_1):prop)]))
>>)]
>> {move 0}

```
```

define Setrel fldev : setof (Pow A, [z=>Exists \

```
define Setrel fldev : setof (Pow A, [z=>Exists \
    [x=>z=seg fldev x] \
    [x=>z=seg fldev x] \
    ]) \
    ]) \
>> Setrel: [(.R_1:[(x_2:obj),(y_2:obj) => (---:
>> prop)]),
>> (.A_1:obj),(fldev_1:that field(.R_1,.A_1))
>> => ((Pow(.A_1) setof [(z_3:obj) => (Exists([(x_4:
>> obj) => ((z_3 = (fldev_1 seg x_4)):
>> prop)])
>> :prop)])
>> :obj)]
>> {move 0}
```

We present the basic definitions supporting an implementation of quasiorders (reflexive, transitive relations) as sets, making no use of ordered pairs. A quasi-order R on a set A is implemented as the set of segments

$$
\operatorname{seg}_{R}(x)=\{y \in A: y R x\}
$$

in the relation on the set. If the relation R is represented by the set r, we have $x R y \leftrightarrow y \in \bigcup r \wedge(\forall z \in r: y \in z \rightarrow x \in z)$. Our first aim is to prove that all quasi-orders are represented by sets in this way.

```
Lestrade execution
clearcurrent
```

open
declare x obj

```
>> x: obj {move 2}
    declare y obj
>> y: obj {move 2}
    declare z obj
>> z: obj {move 2}
    declare R [x,y=> prop] \
        R: [(x_1:obj),(y_1:obj) => (---:prop)]
        {move 2}
    declare transev that transitive R
        transev: that transitive(R) {move 2}
    declare A obj
        A: obj {move 2}
    declare fldev that field R, A
    fldev: that field(R,A) {move 2}
    declare reflev that reflexive fldev
```

```
>> reflev: that reflexive(fldev) {move 2}
```

 open
 declare u obj
 >> u: obj \{move 3\}

```
        declare relev1 that x R y
>> relev1: that (x R y) {move 3}
```

 declare relev2 that x relrep y, Setrel \}
 fldev
 >> relev2: that relrep(x,y,Setrel(fldev))
>> \{move 3\}

In text, we will refer to Setrel fldev as r, the set representing the reflexive, transitive relation R with field A. Our first aim is to show that if $x R y$ (relev1) then $y \in \bigcup r \wedge(\forall z \in r: y \in z \rightarrow x \in z)$. We begin by observing that $y \in \bigcup r$ because $y \in \operatorname{seg}_{R}(y) \in r$.

Lestrade execution:

```
    define line1 : Ui (Ui fldev x, y)
    line1: [(---:that ((x R y) -> ((x E
\(\begin{array}{lr}\gg & \text { line1: [(---:that }((x \\ \gg & A) \&(y ~ E ~ A))))]\end{array}\)
>>
            \{move 2\}
        define line2 relev1 : Mp relev1 line1
>> line2: [(relev1_1:that (x R y)) =>
```

 (---:that ((x E A) \& (y E A)))]
 \{move 2\}
    ```
define line3 relev1 : Simplification1 \
    line2 relev1
    line3: [(relev1_1:that (x R y)) =>
            (---:that (x E A))]
        {move 2}
```

 define line4 relev1 : Simplification2 \}
 line2 relev1
 line4: [(relev1_1:that (x R y)) =>
 (---:that (y E A))]
 \{move 2\}
 define line5 : Ui reflev y
 line5: [(---:that ((y E A) -> (y R
 y)))]
 \{move 2\}
 define line7 relev1 : Mp line4 relev1 \}
 line5
 line7: [(relev1_1:that (x R y)) =>
 (---:that (y R y))]
 \{move 2\}
 define line8 relev1 : Fixprop(y E seg \}
 fldev y, Sep01 ([u=>u
 R y] \}
 , line4 relev1, line7 relev1))
 line8: [(relev1_1:that (x R y)) =>
 (---:that (y E (fldev seg y)))]
 We need to show that $\operatorname{seg}_{R}(y) \in \mathcal{P}(A)$.

```
Lestrade execution:
```

 define line9 : segset fldev y
 >>
>>
>>
>>
declare v obj
v : obj \{move 3\}
declare insegev that v E seg fldev \}
y
insegev: that (v E (fldev seg y)) \{move
3\}
define line10 : Fixprop((seg fldev \}
y) E Pow A , Pow2 line9 [v,insegev \}
=> Simplification1 Mp(Sep3
insegev, Ui(Ui fldev v,y))]) \}
>> line10: [(---:that ((fldev seg y) E
Pow(A)))]
\{move 2\}
define line11 : Eib [u=> (fldev seg \}

```
```

 y) = fldev seg u] \
    ```
```

 y) = fldev seg u] \
 Reflexive (fldev seg y)
    ```
    Reflexive (fldev seg y)
```

```
    line11: [(---:that Exists([(u_2:obj)
```

 line11: [(---:that Exists([(u_2:obj)
 => (((fldev seg y) = (fldev seg
 => (((fldev seg y) = (fldev seg
 u_2)):prop)]))
 u_2)):prop)]))
]
]
 {move 2}
 {move 2}
 define line12 : Fixprop((fldev seg \
define line12 : Fixprop((fldev seg \
y) E Setrel fldev, Sep1 (line10,line11))
y) E Setrel fldev, Sep1 (line10,line11))
line12: [(---:that ((fldev seg y) E
line12: [(---:that ((fldev seg y) E
Setrel(fldev)))]
Setrel(fldev)))]
{move 2}
{move 2}
define line13 relev1 : Union1 line8 \
define line13 relev1 : Union1 line8 \
relev1 line12
relev1 line12
line13: [(relev1_1:that (x R y)) =>
line13: [(relev1_1:that (x R y)) =>
(---:that (y E Union(Setrel(fldev))))]
(---:that (y E Union(Setrel(fldev))))]
{move 2}

```
        {move 2}
```


[^0]: ${ }^{1}$ The same Lestrade command can be used to declare a function variable in the next move, but this is not part of the basic model. We will see that the basic model allows the declaration of function variables with some indirection.
 ${ }^{2}$ We will very shortly see that some arguments can be left implicit, but this is not part of

[^1]: the basic model.
 ${ }^{3}$ subject to the same remark about implicit arguments made in the previous paragraph.
 ${ }^{4}$ Lestrade handles bound variable collision issues by indexing each bound variable appearing in a given function sort term or anonymous function term (λ-term) with a numerical index shared by all variables bound at the top level in that context, and not appearing in any other term in the context.

